

PREFACE

Command	line	clients	are	everywhere.	Almost	everyone,	at	least	in	tech,	is	using	them.

There	are	a	lot	of	successful	command	line	clients	out	there:	the	Linux	project	has	git	and
the	 Node.js	 project	 has	 npm.	 We	 use	 some	 of	 them	 multiple	 times	 per	 day.	 Apache
CouchDB	recently	got	nmo	(speak:	nemo),	a	tool	to	manage	the	database	cluster.	We	can
learn	a	lot	from	successful	command	line	interfaces	in	order	to	write	better	command	line
clients.

When	I	started	to	get	 interested	in	command	line	clients	I	realised	that	 there	are	a	lot	of
discussions	and	informations	on	the	web	about	writing	APIs.	The	web	is	full	of	tutorials	to
teach	 you	 how	 to	 build	 APIs,	 especially	REST-APIs,	 but	 almost	 nothing	 can	 be	 found
about	writing	good	CLIs.	This	book	tries	to	explain	what	makes	a	good	CLI.	In	the	second
part	of	the	book	we	will	build	a	small	command	line	client	to	learn	how	to	use	Node.js	to
create	great	command	line	clients	that	people	love.

The	goal	of	the	book	is	to	show	the	principles	to	build	a	successful	command	line	client.
The	 provided	 code	 should	 give	 you	 a	 good	 understanding	 what	 is	 important	 to	 build
successful	command	line	clients	and	how	you	could	implement	them.

Every	section	has	its	own	code	examples.	Before	you	run	the	code,	you	have	to	run	npm

install	in	the	folder	that	belongs	to	the	section.

You	can	download	the	code	samples	at	http://theclibook.com/material/sourcecode.zip.

I	 trust	 you	 and	 published	 this	 book	 without	 DRM.	 Please	 buy	 a	 copy	 at
http://theclibook.com	in	case	you	did	not	buy	the	book.

I	 am	 very	 happy	 about	 feedback.	 Please	 send	 and	 feedback	 or	 corrections	 to
theclibook@kowalski.gd.	You	can	also	contact	me	on	twitter:	@robinson_k

I	hope	you	enjoy	the	book	–	please	recommend	it	in	case	you	like	it. �

http://theclibook.com/material/sourcecode.zip
http://theclibook.com
mailto:theclibook@kowalski.gd
https://twitter.com/robinson_k

▪

▪

▪

WHAT	MAKES	A	GOOD	CLI?

In	this	chapter	we	will	take	a	look	at	successful	command	line	clients	and	what	they	are
doing	 pretty	 well,	 which	 will	 help	 us	 to	 understand	 the	 problems	 users	 face	 using	 the
Terminal.	Understanding	the	problems	of	our	users	will	help	us	to	build	better	command
line	clients	with	Node	later	in	the	book.

Let’s	take	a	look	at	how	people	usually	use	a	CLI:	most	of	the	time	a	human	sits	in	front
of	 a	 keyboard	 and	 interacts	 with	 a	 terminal.	 We	 want	 to	 use	 simple	 and	 recognisable
commands	for	our	CLI.	Sadly	just	easy	recognisable	commands	don’t	get	us	very	far	right
now.

Maybe	the	problem	is	easier	 to	understand	if	we	take	a	 look	at	something	what	I	would
call	a	bad	CLI:

$	mycli	-A	-a	16	r	foo.html

error:	undefined	is	not	a	function

In	my	 example	 I	 have	 to	 enter	 cryptic	 commands	which	 is	 answered	 by	 a	 very	 cryptic
error	message.	What	does	 -A	 -a	16	 and	 r	mean?	Why	 I	 am	getting	 an	 error	 back,	 am	 I
using	it	wrong?	What	does	the	error	mean	and	how	can	I	get	my	task	done?

So	what	makes	a	good	CLI?	Let’s	try	it	with	the	following	three	principles:

you	never	get	stuck

it	is	simple	and	supports	powerusers

you	can	use	it	for	all	the	things!

In	short:	A	successful	CLI	is	successful	because	its	users	are	successful	and	happy.

You	never	get	stuck
Nobody	likes	to	be	in	a	traffic	jam,	stuck,	just	making	a	few	meters	per	minute.	We	want
to	 reach	our	 target	destination,	 that’s	all	we	want!	The	same	applies	 for	our	users.	Both
developers	and	users	are	extremely	unhappy	when	the	tools	they	use	are	standing	in	their
way.	They	just	want	to	get	their	task	done.

So	what	does,	„You	never	get	stuck“	mean,	exactly?	It	means	that	we	should	always	offer
our	users	a	way	to	solve	their	task,	a	command	should	never	be	a	dead	end.	Additionally

the	developers	of	the	CLI	should	avoid	every	source	of	friction	in	their	tool.

Let’s	take	a	look	at	me,	trying	to	use	git:

$	git	poll

git:	'poll'	is	not	a	git	command.	See	'git	--help'.

Did	you	mean	this?

		pull

In	this	example	I	entered	a	wrong	command.	git	answers	friendly:	„Hey	Robert,	 it	 looks
like	you	entered	a	wrong	command,	but	if	you	type	in	git	--help,	you	can	list	all	the

existing	commands.	And	hey,	 it	 just	 looks	 like	you	mistyped	git	pull,	 did	you	mean	git
pull?“

git	offers	us	a	way	to	continue	our	work	and	finish	the	task.

And	if	we	take	a	look	at	npm,	another	successful	CLI	client,	we’ll	see	the	same	concept:

$	npm	ragrragr

Usage:	npm	<command>

where	<command>	is	one	of:

				access,	add-user,	adduser,	apihelp,	author,	bin,	bugs,	c,

				cache,	completion,	config,	ddp,	dedupe,	deprecate,	dist-tag,

				dist-tags,	docs,	edit,	explore,	faq,	find,	find-dupes,	get,

				help,	help-search,	home,	i,	info,	init,	install,	issues,	la,

				link,	list,	ll,	ln,	login,	logout,	ls,	outdated,	owner,

				pack,	prefix,	prune,	publish,	r,	rb,	rebuild,	remove,	repo,

				restart,	rm,	root,	run-script,	s,	se,	search,	set,	show,

				shrinkwrap,	star,	stars,	start,	stop,	t,	tag,	test,	tst,	un,

				uninstall,	unlink,	unpublish,	unstar,	up,	update,	upgrade,

				v,	verison,	version,	view,	whoami

npm	<cmd>	-h					quick	help	on	<cmd>

npm	-l											display	full	usage	info

npm	faq										commonly	asked	questions

npm	help	<term>		search	for	help	on	<term>

npm	help	npm					involved	overview

Specify	configs	in	the	ini-formatted	file:

				/Users/robert/.npmrc

or	on	the	command	line	via:	npm	<command>	—key	value

Config	info	can	be	viewed	via:	npm	help	config

npm@2.7.4	/Users/robert/.nvm/versions/node/v0.12.2/lib/node_modules/npm

In	 this	example	 I	 try	 to	put	garbage	 into	npm,	so	npm	answers	 friendly:	„Hey	Robert,	 I
don’t	know	that	command,	but	here	are	all	the	commands	that	would	be	possible.	You	can
use	them	like	this	and	get	help	about	them	by	typing	in	npm	help	<command>.“

Like	git,	npm	immediately	offers	help	 to	enable	me	to	finish	my	task,	even	if	 I	have	no
idea	how	to	use	npm	at	all.

Still	lost?
What	if	I	still	need	help?	Maybe	I	want	to	get	some	help	before	I	just	try	out	commands.
Turns	 out	 there	 is	 a	 quite	 reliable	way	 to	 ship	 documentation	 on	Unix	 or	 Linux,	man-
pages!

Figure	1.	The	man-page	for	git	pull

Man-pages	are	quite	nice,	as	you	don’t	need	the	internet	to	open	them.	You	can	also	stay
in	 the	same	terminal	window	to	read	them	and	don’t	have	to	switch	to	another	window,
e.g.	a	browser.

But	some	users	don’t	know	about	man-pages	or	they	don’t	like	to	use	them.	Additionally
many	of	them	will	be	on	Windows	which	can’t	handle	man-pages	natively,	so	git	and	npm
offer	their	documentation	as	webpages,	too:

Figure	2.	The	documentation	website	of	the	git	project

Both	git	and	npm	are	making	use	of	a	trick:	they	write	their	documentation	once	(e.g.	in
Markdown	or	Asciidoc)	and	use	the	initital	source	as	the	base	for	the	different	formats	of
their	docs.	Later	they	convert	them	to	different	formats,	e.g.	to	html.

If	you	take	a	look	at	the	man-pages	of	git	and	npm,	you	will	notice	that	their	websites	are
basically	framing	the	content	from	the	man-page	with	a	header	and	a	sidebar.

Figure	3.	The	manpage	for	npm	publish

Figure	4.	The	documentation	website	of	npm

Error	handling
Sometimes	things	go	still	horribly	wrong…	Let’s	take	a	look	at	my	example	for	a	bad	CLI
again:

$	mycli	-A	-a	16	r	foo.py

events.js:85

						throw	er;	//	Unhandled	'error'	event

												^

Error:	ENOENT,	open	'cli.js'

				at	Error	(native)

In	this	case	we	are	getting	back	a	stacktrace	without	much	context.	For	most	people	these
stacktraces	 look	 quite	 cryptic,	 especially	 for	 people	 that	 don’t	write	Node.js	 on	 a	 daily
basis.

And	it	is	even	worse:	I	really	can’t	tell	if	I	just	hit	a	bug	in	the	command	line	client	or	if	I
am	just	using	the	CLI	in	a	wrong	way.	Looking	at	that	small	terminal,	with	no	idea	what
to	do,	I	get	extremely	unhappy	and	so	our	users	will	get	unhappy.

One	thing	nmo	supports	is	„usage	errors“	—	here	is	what	they	look	like:

$	nmo	cluster	dsf

ERR!	Usage:

nmo	cluster	get	[<clustername>],	[<nodename>]

nmo	cluster	add	<nodename>,	<url>,	<clustername>

nmo	cluster	join	<clustername>

If	a	user	tries	to	use	a	command	in	a	wrong	way,	nmo	will	tell	them	immediately	how	they
can	use	the	command	to	get	their	job	done.	No	need	to	open	the	documentation.

nmo	also	shows	stacktraces	to	a	user,	if	nmo	crashes	for	serious	reasons:

$	nmo	cluster	join	anemone

ERR!	df	is	not	defined

ERR!	ReferenceError:	df	is	not	defined

ERR!					at	/Users/robert/apache/nmo/lib/cluster.js:84:5

ERR!					at	cli	(/Users/robert/apache/nmo/lib/cluster.js:68:27)

ERR!					at	/Users/robert/apache/nmo/bin/nmo-cli.js:32:6

ERR!

ERR!	nmo:	1.0.1	node:	v0.12.2

ERR!	please	open	an	issue	including	this	log	on	

https://github.com/robertkowalski/nmo/issues

nmo	adds	the	current	nmo	and	node	version	to	the	stacktrace,	like	npm	does.	We	also	ask
the	user	to	copy	the	stacktrace	and	to	open	an	issue	containing	the	stacktrace.

The	 reports	 make	 it	 easy	 for	 the	 team	 to	 identify	 the	 bug,	 solve	 it,	 and	 release	 a	 new
version	of	nmo	by	seeing	the	stacktrace.

And	again	the	user	is	not	stuck.	The	user	gets	help	to	solve	their	task,	in	the	worst	case	we
help	them	in	our	issue	tracker.

It	supports	powerusers
Powerusers	are	important	for	your	CLI.	They	are	users	who	will	talk	about	your	CLI	and
raise	the	overall	adoption	by	spreading	the	word.

Shortcuts
Most	power	users	are	using	your	CLI	multiple	times	every	day.	An	easy	way	to	support
them	is	by	providing	shortcuts.

npm	has	lots	of	shortcuts.	For	instance,	npm	i	is	the	short	form	for	npm	install.	git

lets	you	define	your	own	shortcuts	in	the	.gitconfig	file.	I	use	git	co	as	a	shortcut

for	git	checkout,	for	example.

Scripting

https://github.com/robertkowalski/nmo/issues/1
https://github.com/robertkowalski/nmo/issues/1

At	some	point	your	command	line	client	will	get	quite	successful,	people	are	loving	it	and
start	 using	your	CLI	 in	 creative	ways.	The	 command	 line	 client	will	 suddenly	 run	on	 a
Jenkins,	as	part	of	 their	deployment	 in	a	chef	or	Puppet	 run,	or	your	users	will	use	 it	 in
ways	you	never	could	have	imagined!

Sooner	or	later	not	only	humans	will	use	your	CLI,	but	also	automated	processes.	To	make
your	CLI	even	more	successful	it’s	a	good	idea	to	support	scripting.

exit	codes
Operating	systems	have	different	exit	codes	to	signal	if	a	command	was	successful.	You
will	get	back	a	0	if	your	recent	command	was	successful.	1	would	be	a	general	error.

Exit	codes	are	very	useful	for	users	that	want	to	wrap	your	command	line	client	in	a	bash
script.

Here	is	an	example:

$	git	poll

git:	'poll'	is	not	a	git	command.	See	'git	--help'.

Did	you	mean	this?

		pull

$	echo	$?

1

git	 notifies	me	 that	 something	 went	 wrong	 -	 I	 am	 getting	 back	 a	1	 as	 exit	 code.	With

proper	exit	codes	every	writer	of	a	bash	script	can	handle	the	cases	where	a	command	is
not	successful.

JSON	output
In	nmo	every	command	that	gives	back	information	supports	json-formatted	output:

$	nmo	cluster	get	--json

{	anemone:

			{	node1:	'http://node1.local',

					node2:	'http://node2.local',

					node3:	'http://node3.local'	}	}

JSON	support	 enables	user	 to	process	data	 easily	 in	 the	programming	 language	of	 their
choice,	as	most	languages	support	JSON.	They	spawn	a	child	process	in	language	x	and

listen	to	stdout	for	the	output.	They	can	also	directly	pipe	the	output	into	a	consumer	on

the	shell:

$	nmo	cluster	get	--json	|	consumer.py

JSON	output	gives	a	lot	of	flexibility	to	the	users.

The	API	in	the	Command	Line	Client
There	is	another	concept	to	make	scripting	easier:	I	call	it	the	„The	API	in	the	Command
Line	Client“:

const	nmo	=	require('nmo');

nmo.load({}).then(()	=>	{

		nmo.commands.cluster

				.get('testcluster',	'node1@127.0.01')

				.then((res)	=>	{

						console.log(res);

				});

});

In	nmo	every	command	 is	 exposed	on	nmo.commands.	 If	 a	user	wants	 to	use	nmo	as

part	of	 their	node	 scripts,	 they	are	 able	 to	 require	 it.	The	 JavaScript	API	 is	documented
like	the	CLI.

The	JavaScript	API	enables	the	users	to	embed	nmo	in	their	Node.js	scripts	for	complex
processes.	They	could	even	fork	nmo	and	embed	it	into	their	own	command	line	client.

Configuration
Powerusers	 love	 configuration.	 Given	 they	 use	 a	 command	 line	 client	 a	 lot,	 maybe
multiple	times	a	day,	it	is	no	surprise	that	they	would	like	to	have	some	features	enabled
per	default.	But	in	rare	cases,	there	is	an	exception	and	they	don’t	need	the	default	setting.

npm	supports	option	arguments	on	the	command	line:

$	npm	i	hapi	--registry=https://reg.kowalski.gd

/Users/robert

└──	hapi@9.0.4

This	 command	 tries	 to	 download	 the	 package	hapi	 from	 a	 private	 registry	 at

https://reg.kowalski.gd.

http://apache.github.io/couchdb-nmo/api/nmo-cluster.html
https://reg.kowalski.gd

But	I	can	also	set	this	private	registry	as	the	new	default	registry:

$	npm	config	set	registry	https://reg.kowalski.gd

npm	writes	the	new	registry	into	the	config:

$	cat	~/.npmrc

loglevel=http

registry=https://reg.kowalski.gd

The	 next	 time	 I	 try	 to	 install	 a	 package,	 npm	 will	 use	 my	 new	 default	 registry,
https://reg.kowalski.gd:

$	npm	i	hapi

If	I	don’t	want	to	use	this	new	default	registry	I	can	pass	an	argument	to	the	CLI	and	it
will	use	the	alternate	registry	just	for	this	call:

$	npm	i	hapi	--registry=https://registry.npmjs.org

/Users/robert

└──	hapi@9.0.4

That	means	we	have	different	priorities	between	default	configurations	and	command	line
arguments	in	npm	and	this	combination	is	extremely	powerful.

You	can	use	it	for	all	the	things!
Let’s	 take	 a	 look	 at	 the	 last	 principle,	 and	 the	 solution	 to	 it	 sounds	 very	 easy	 at	 first.
Whenever	I	have	to	do	a	task	multiple	times	and	it	fits	into	the	domain	of	my	command
line	client,	 I’ll	 just	add	 it	 as	a	new	command.	This	habit	 turns	 into	a	win-win	situation:
You	have	to	do	less	boring	tasks	and	your	users	get	happy	because	they	get	a	new	feature
and	they	also	have	to	do	less	monkey	tasks	-	making	your	command	line	client	even	more
successful.	Sadly	it	can	be	quite	hard	to	spot	common	pain	points,	especially	if	you	work
with	multiple	 teams	 and/or	 a	 lot	 different	 people.	Additionally	most	 of	 us	 are	 suffering
organisational	blindness	working	on	the	same	topic	after	a	certain	time.	But	if	you	identify
a	task	to	automate	for	you	and	your	users,	you	will	be	hugely	rewarded! �

https://reg.kowalski.gd

▪

▪

▪

WRITING	A	DATABASE
ADMINISTRATION	TOOL	WITH
NODE.JS

In	 this	part	of	 the	book	we	will	write	a	database	administration	 tool	named	 lounger	and
follow	the	principles	that	make	a	good	CLI.	The	code	for	every	section	can	be	found	in	the
zip	file	 that	comes	with	the	book.	If	you	want	to	play	with	the	code,	don’t	forget	 to	run
npm	install	in	the	folder	of	the	section	you	want	to	test.	The	code	also	has	a	testsuite,

you	can	run	it	with	npm	test.

After	we	wrote	 the	 code	 that	 bootstraps	 the	 client,	 you	 can	 run	 the	 client	 directly	with
node	bin/lounger-cli.	If	you	prefer	to	run	the	client	like	an	installation	from	the

registry,	type	npm	link	in	the	directory	of	the	section	you	want	to	test.	Afterwards	you

can	run	the	version	that	is	currently	linked	with	lounger.

Why	use	Node.js?
I	sometimes	get	asked	why	I	write	command	line	clients	using	Node.js.	For	me	the	main
reasons	are:

a	huge	ecosystem	with	modules	in	every	flavour

very	fast	development	speed

writing	JavaScript	is	fun!

For	 me	 these	 three	 reasons	 make	 Node.js	 the	 perfect	 platform	 to	 write	 command	 line
clients.

Setup
We	will	write	our	command	line	client	in	ES2015	(also	known	as	ES6),	which	is	the	most
recent	 version	 of	 JavaScript.	 In	 order	 to	 use	 it,	 we	 have	 to	 install	 Node	 v4	 from
https://nodejs.org.	 If	 you	want	 to	 support	 older	Node.js	 versions,	 I	 can	 recommend	 the
Babel	 transpiler	 to	 transpile	 ES6	 code	 to	 ES5	 compatible	 code.	 You	 can	 get	 Babel	 at
https://babeljs.io/.

https://nodejs.org
https://babeljs.io/

The	 tool	 that	 we’ll	 write	 will	 be	 a	 small	 database	 administration	 tool	 for	 CouchDB	 /
PouchDB.	There	are	multiple	ways	to	get	a	development	database	server	up	and	running.

One	way	is	to	install	Erlang	and	CouchDB	for	your	Operating	System.	You	can	download
official	 packages	 at	http://couchdb.apache.org	 and	 many	 Linux	 distributions	 have
CouchDB	in	their	package	repository,	too.

I	 think	 the	 easiest	 way	 is	 to	 use	 the	 PouchDB	 Server	 that	 is	 available	 in	 the	 attached
source	code	 for	 the	book	or	 to	get	a	CouchDB	instance	at	https://cloudant.com	which	 is
free	until	you	hit	a	limit.

Using	the	PouchDB	database	server
The	database	server	is	located	in	sourcecode/database,	in	order	to	use	it	we	have	to

install	the	needed	dependencies:

$	cd	sourcecode/database

$	npm	install

To	boot	the	database	we	just	run:

$	npm	run	start

We	can	now	interact	with	the	database	server	via	HTTP,	as	CouchDB	and	PouchDB	are
databases	with	an	HTTP	API:

$	curl	-XGET	http://127.0.0.1:5984/

{"express-pouchdb":"Welcome!","version":"1.0.1","vendor":{"name":"PouchDB	

authors","version":"1.0.1"},"uuid":"4fad2c01-ba32-4249-8278-8786e877c397"}

Let’s	create	a	database	called	people:

$	curl	-XPUT	http://127.0.0.1:5984/people

{"ok":true}

We	can	now	insert	documents	into	our	database	people:

$	curl	-XPOST	http://127.0.0.1:5984/people	-d	'{"name":	"Rocko	Artischocko",	

\

	"likes":	["Burritos",	"Node.js",	"Music"]	}'	-H	'Content-Type:	

application/json'

http://couchdb.apache.org
https://cloudant.com

{"ok":true,"id":"21b5ad83-0ad6-47c7-86f8d9636113160a","rev":"1-

411894affa038a6fd7a164e1bfd84146"}

Using	the	id	we	can	retrieve	the	documents	from	the	database:

$	curl	-XGET	http://127.0.0.1:5984/people/21b5ad83-0ad6-47c7-86f8-

d9636113160a

{"name":"Rocko	Artischocko","likes":

["Burritos","Node.js","Music"],"_id":"21b5ad83-0ad6-47c7-86f8-

d9636113160a","_rev":"1-411894affa038a6fd7a164e1bfd84146"}

Great!	We	have	a	database	up	and	running!

Troubleshooting
Getting	curl
curl	 is	 a	 command	 line	client	 for	HTTP	 requests.	 It	 is	 available	 for	all	major	Operating
Systems.	OSX	users	can	install	it	using	brew	and	for	Windows	there	are	Windows	builds

available	at	http://curl.haxx.se/download.html.

File	watchers
On	Linux	I	got	an	error	because	my	user	already	watched	too	much	files:

$	npm	run	start

>	theclibook-database@1.0.0	start	/home/rocko/clibook/sourcecode/database

>	pouchdb-server	--in-memory

fs.js:1236

				throw	error;

				^

Error:	watch	./log.txt	ENOSPC

				at	exports._errnoException	(util.js:874:11)

				at	FSWatcher.start	(fs.js:1234:19)

				at	Object.fs.watch	(fs.js:1262:11)

				at	Tail.watch	

(/home/rocko/clibook/sourcecode/database/node_modules/pouchdb-

server/node_modules/tail/tail.js:83:32)

				at	new	Tail	

(/home/rocko/clibook/sourcecode/database/node_modules/pouchdb-

server/node_modules/tail/tail.js:72:10)

				at	/home/rocko/clibook/sourcecode/database/node_modules/pouchdb-

server/lib/logging.js:69:20

				at	FSReqWrap.cb	[as	oncomplete]	(fs.js:212:19)

http://curl.haxx.se/download.html

npm	ERR!	Linux	3.13.0-71-generic

npm	ERR!	argv	"/home/rocko/.nvm/versions/node/v4.2.3/bin/node"	

"/home/rocko/.nvm/versions/node/v4.2.3/bin/npm"	"run"	"start"

npm	ERR!	node	v4.2.3

npm	ERR!	npm		v3.5.1

npm	ERR!	code	ELIFECYCLE

npm	ERR!	theclibook-database@1.0.0	start:	`pouchdb-server	--in-memory`

npm	ERR!	Exit	status	1

npm	ERR!

npm	ERR!	Failed	at	the	theclibook-database@1.0.0	start	script	'pouchdb-server	

--in-memory'.

npm	ERR!	Make	sure	you	have	the	latest	version	of	node.js	and	npm	installed.

npm	ERR!	If	you	do,	this	is	most	likely	a	problem	with	the	theclibook-

database	package,

npm	ERR!	not	with	npm	itself.

npm	ERR!	Tell	the	author	that	this	fails	on	your	system:

npm	ERR!					pouchdb-server	--in-memory

npm	ERR!	You	can	get	information	on	how	to	open	an	issue	for	this	project	

with:

npm	ERR!					npm	bugs	theclibook-database

npm	ERR!	Or	if	that	isn't	available,	you	can	get	their	info	via:

npm	ERR!					npm	owner	ls	theclibook-database

npm	ERR!	There	is	likely	additional	logging	output	above.

npm	ERR!	Please	include	the	following	file	with	any	support	request:

npm	ERR!					/home/rocko/clibook/sourcecode/database/npm-debug.log

I	fixed	it	with	by	raising	the	limit	using	this	command:

$	echo	fs.inotify.max_user_watches=524288	|	sudo	tee	-a	/etc/sysctl.conf	&&	

sudo	sysctl	-p

A	simple	status	check
Our	first	command	will	check	if	the	database	is	up	and	running.	Our	users	can	take	a	look
if	the	database	server	is	running	and	we	can	use	the	command	internally	for	the	commands
which	require	a	running	database.

The	command	to	check	if	a	database	server	is	online	will	look	like	this:

$	lounger	isonline	http://192.168.0.1:5984

http://192.168.0.1:5984	is	up	and	running

The	API	would	look	like	this:

$	lounger.commands.isonline('http://example.com')

Getting	started	from	scratch
To	 get	 started	we	 have	 to	 create	 a	package.json	 file.	 Luckily	 npm	 provides	 a	 nice

assistant	to	create	those:

$	npm	init

We	then	just	answer	the	questions	npm	asks	us.

Figure	1.	The	assistant	from	npm	init	to	create	a	package.json

Additionally	we	have	to	create	three	folders:	test,	lib	and	bin.	test	will	contain	our

unit	and	integration	tests,	lib	will	contain	the	core	of	our	command	line	client.	The	bin

folder	will	contain	a	small	wrapper	that	will	boot	up	the	core	of	our	client.

CouchDB	and	PouchDB	both	return	a	welcome	message	when	we	access	 the	root	url	at
http://localhost:5984

$	curl	localhost:5984

CouchDB	returns:

{"couchdb":"Welcome","uuid":"17ed4b2d8923975cf658e20e219faf95","version":"1.5

.0","vendor":{"version":"14.04","name":"Ubuntu"}}

PouchDB	returns:

{"express-pouchdb":"Welcome!","version":"1.0.1","vendor":{"name":"PouchDB	

authors","version":"1.0.1"},"uuid":"4fad2c01-ba32-4249-8278-8786e877c397"}

http://localhost:5984

Choose	your	own	flavours

We	will	make	use	of	this	behaviour	to	check	if	the	database	is	online.

As	 already	 mentioned	 in	Why	 use	 Node.js?	 Node.js	 has	 a	 great	 ecosystem.	 There	 are
many	battle	proven	modules	that	help	us	to	solve	our	tasks.

For	 our	 status	 check	 we	 will	 use	 the	 module	request	 to	 handle	 our	 HTTP	 requests.

mocha	 will	 run	 our	 testsuite	 and	nock	 helps	 us	 to	mock	HTTP	 responses	without	 the

need	to	boot	a	database	instance	for	the	testsuite.

The	 arguments	--save	 and	--save-dev	 will	 add	 the	 packages	 to	 the

dependencies	 and	devDependencies	 section	 of	 our	package.json.

devDependencies	 are	 needed	 just	 for	 development,	 not	 for	 running	 the	 package	 in

production:

$	npm	i	--save	request

$	npm	i	--save-dev	mocha	nock

After	running	the	commands	we	should	have	everything	we	will	need	for	now.

There	 are	many	 good	 test	 runners	 for	 Node.js,	 some	 alternatives	 to	mocha	 are	 the	 npm	 modules	tap,

tape	or	lab

My	package.json	looks	like	this	now:

{

		"name":	"lounger",

		"version":	"1.0.0",

		"description":	"a	tool	for	couchdb/pouchdb	administration",

		"main":	"lib/lounger.js",

		"directories":	{

				"test":	"test"

		},

		"dependencies":	{

				"request":	"^2.67.0"

		},

		"devDependencies":	{

				"mocha":	"^2.3.4",

				"nock":	"^5.2.1"

		},

		"scripts":	{

				"test":	"mocha	-R	spec"

		},

		"keywords":	[

				"couchdb",

				"pouchdb"

],

		"author":	"Robert	Kowalski	<rok@kowalski.gd>"

}

This	book	is	not	focussed	on	different	development	 techniques	 like	TDD,	but	 if	you	are
really	 into	Test-Driven-Development,	 you	 can	write	 failing	 tests	with	mocha	 before	we
implement	the	actual	code.	A	few	suggestions:

1.	 it	detects	if	the	database	is	online

2.	 it	detects	offline	databases

3.	 it	detects	if	something	is	online,	but	not	a	CouchDB/PouchDB

4.	 it	only	accepts	valid	urls

Written	in	mocha	and	ES6	we	get	a	few	failing	tests	in	test/isonline.js:

'use	strict';

const	assert	=	require('assert');

const	nock	=	require('nock');

describe('isonline',	()	=>	{

		it('detects	if	the	database	is	online',	()	=>	{

				assert.equal('foo',	'to	implement');

		});

		it('detects	offline	databases',	()	=>	{

				assert.equal('foo',	'to	implement');

		});

		it('detects	if	something	is	online,	but	not	a	CouchDB/PouchDB',	()	=>	{

				assert.equal('foo',	'to	implement');

		});

		it('just	accepts	valid	urls',	()	=>	{

				assert.equal('foo',	'to	implement');

		});

});

To	run	 the	 testsuite,	we	have	 to	 type	either	npm	test	 or	npm	t	on	 the	 terminal.	The

code	of	this	section	can	be	found	in	sourcecode/client-boilerplate.

The	internals	of	the	command
Let’s	create	and	edit	the	file	lib/isonline.js.	The	filename	is	important,	as	we	will

use	the	name	of	the	file	later	during	the	bootstrap	of	the	client.	As	a	first	step,	we	have	to
require	our	dependency	request:

'use	strict';

const	request	=	require('request');

To	make	a	request	we	create	the	function	isOnline	which	will	take	an	url	and	send	the

request:

function	isOnline	(url)	{

		return	new	Promise((resolve,	reject)	=>	{

				request({

						uri:	url,

						json:	true

				},	(err,	res,	body)	=>	{

If	there	is	no	HTTP	service	at	all	listening	on	the	specified	url	we	resolve	the	Promise	with
an	object	with	contains	the	url	as	a	key,	and	false	as	a	value:

						if	(err	&&	(err.code	===	'ECONNREFUSED'	||	err.code	===	'ENOTFOUND'))	{

								return	resolve({[url]:	false});

						}

For	all	other	errors	we	reject	the	Promise:

						//	any	other	error

						if	(err)	{

								return	reject(err);

						}

If	 we	 get	 a	Welcome	 from	 CouchDB	 or	 PouchDB,	 we	 can	 safely	 assume	 that	 the

database	server	is	online:

						//	maybe	we	got	a	welcome	from	CouchDB	/	PouchDB

						const	isDatabase	=	(body.couchdb	===	'Welcome'	||

								body['express-pouchdb']	===	'Welcome!');

						return	resolve({[url]:	isDatabase});

As	a	last	step	we	have	to	export	the	function:

exports.api	=	isOnline;

Here	is	the	whole	function:

function	isOnline	(url)	{

		return	new	Promise((resolve,	reject)	=>	{

				request({

						uri:	url,

						json:	true

				},	(err,	res,	body)	=>	{

						//	db	is	down

						if	(err	&&	(err.code	===	'ECONNREFUSED'	||	err.code	===	'ENOTFOUND'))	{

								return	resolve({[url]:	false});

						}

						//	any	other	error

						if	(err)	{

								return	reject(err);

						}

						//	maybe	we	got	a	welcome	from	CouchDB	/	PouchDB

						const	isDatabase	=	(body.couchdb	===	'Welcome'	||

								body['express-pouchdb']	===	'Welcome!');

						return	resolve({[url]:	isDatabase});

				});

		});

}

exports.api	=	isOnline;

We	can	try	our	function	on	the	Node.js	REPL:

$	node

>	const	isonline	=	require('./lib/isonline.js');

undefined

>	isonline('http://example.com').then(console.log);

Promise	{	<pending>	}

>	{	'http://example.com':	false	}

>	isonline('http://doesnotexist.example.com').then(console.log);

Promise	{	<pending>	}

>	{	'http://doesnotexist.example.com':	false	}

>	isonline('http://localhost:5984').then(console.log);

Promise	{	<pending>	}

>	{	'http://localhost:5984':	true	}

Congratulations!	We	just	finished	the	first	part,	the	API	part	of	our	new	command!

The	CLI	part
It	would	be	frustrating	for	the	end	user	if	that	was	the	command	line	interface	they	have	to
use.	The	output	 is	 not	 easily	 readable	 and	 the	 functionality	not	 easy	 to	understand.	The
API	function	doesn’t	print	to	the	console,	which	is	perfect	for	an	API,	but	not	desirable	for
a	CLI.	It	even	requires	some	Node.js	knowledge	to	run	it.	So	let’s	add	a	nice	CLI	function
to	our	file	isonline.js	and	export	it	as	cli:

function	cli	(url)	{

		return	new	Promise((resolve,	reject)	=>	{

		});

}

exports.cli	=	cli;

The	function	returns	a	promise	like	all	our	other	functions.	We	then	call	isOnline	and

print	the	result	on	stdout	for	the	users	that	use	the	command	line	client	on	the	terminal:

				isOnline(url).then((res)	=>	{

						Object.keys(results).forEach((entry)	=>	{

								let	msg	=	'seems	to	be	offline';

								if	(results[entry])	{

										msg	=	'seems	to	be	online';

								}

								//	print	on	stdout	for	terminal	users

								console.log(entry,	msg);

								resolve(results);

						});

				});

function	cli	(url)	{

		return	new	Promise((resolve,	reject)	=>	{

				isOnline(url).then((res)	=>	{

						Object.keys(results).forEach((entry)	=>	{

								let	msg	=	'seems	to	be	offline';

								if	(results[entry])	{

										msg	=	'seems	to	be	online';

								}

								//	print	on	stdout	for	terminal	users

								console.log(entry,	msg);

								resolve(results);

						});

				});

		});

}

exports.cli	=	cli;

It	is	important	to	note:	we	export	the	command	for	the	API	as	exports.api,	while	we

export	the	CLI	command	under	the	cli	property.

The	code	for	this	section	can	be	found	at	sourcecode/the-status-check.

Booting	the	tool
Lounger	 still	 needs	 the	 code	 that	makes	 it	 usable	 on	 the	 command	 line.	 It	 also	 lacks	 a
comfortable	way	to	run	our	API	commands.	Right	now	we	just	have	one	command,	but
we’ll	add	more	soon	(see	[_you_can_use_it_for_all_the_things]).	To	make	all	commands
easy	 to	 use,	 we	 have	 to	 load	 all	 available	 commands	 into	 a	 namespace.	 The	 file
lib/lounger.js	will	take	care	of	it.

The	file	lounger.js	is	the	heart	of	our	command	line	client.	We	require	the	fs	module

as	we	have	to	list	the	files	that	could	contain	commmands:

'use	strict';

const	fs	=	require('fs');

We	 require	 the	package.json	 and	 expose	 the	 current	 version	 of	 the	 module	 as	 a

property	 on	 the	 lounger	 object,	 which	 will	 come	 in	 handy	 later.	 We	 also	 set
lounger.loaded	to	false:

const	pkg	=	require('../package.json');

const	lounger	=	{	loaded:	false	};

lounger.version	=	pkg.version;

We	will	 need	 a	 place	 to	 store	 the	API	 and	 the	CLI	 commands.	As	 the	 bootstrapping	 is
async,	we	will	throw	an	error	if	someone	tries	to	access	the	exposed	functions	before	the

bootstrap	is	finished:

const	api	=	{},	cli	=	{};

Object.defineProperty(lounger,	'commands',	{

		get:	()	=>	{

				if	(lounger.loaded	===	false)	{

						throw	new	Error('run	lounger.load	before');

				}

				return	api;

		}

});

Object.defineProperty(lounger,	'cli',	{

		get:	()	=>	{

				if	(lounger.loaded	===	false)	{

						throw	new	Error('run	lounger.load	before');

				}

				return	cli;

		}

});

The	custom	getter	for	Object.defineProperty	will	throw	if	lounger.loaded	is

false	and	we	try	to	access	a	property	on	lounger.cli	and	lounger.api.

It	 also	 works	 for	 the	 autocomplete	 in	 the	 Node.js	 REPL	 when	 you	 try	 to	 hit	 tab	 for
completion.	Just	try	it!

The	 last	 part	 of	 the	 file	 is	 the	 actual	 bootstrapping,	 where	 we	 get	 all	 files	 in	lib	 and

require	them	if	they	are	JavaScript	files	and	not	lounger.js,	 the	file	we	are	currently

working	with.

The	function	to	bootstrap	lounger	is	called	lounger.load.	In	this	case	we	are	using	a

named	 function.	A	 named	 function	 can	 be	 very	 helpful	 in	 a	 stacktrace	 in	 case	 the	 app
crashes:

lounger.load	=	function	load	()	{

		return	new	Promise((resolve,	reject)	=>	{

		});

};

The	function	fs.readdir	will	list	all	files	in	a	directory.	We	iterate	over	the	list	of	files

fs.readdir	returns:

lounger.load	=	function	load	()	{

		return	new	Promise((resolve,	reject)	=>	{

				fs.readdir(__dirname,	(err,	files)	=>	{

						files.forEach((file)	=>	{

						});

				});

		});

};

If	the	file	is	not	a	JS	file	or	is	lounger.js	itself,	we	ignore	it	by	returning	early:

								if	(!/\.js$/.test(file)	||	file	===	'lounger.js')	{

										return;

								}

In	all	other	cases	we	assume	that	we	found	a	command	for	lounger.	We	take	everything
from	the	filename	before	the	.js	and	save	it	as	cmd:

const	cmd	=	file.match(/(.*)\.js$/)[1];

We	require	the	file:

const	mod	=	require('./'	+	file);

If	 a	 file	 exports	 an	 API	 command	 as	 the	api	 property,	 we	 expose	 it	 on

lounger.commands.	All	CLI	commands	are	available	on	lounger.cli:

								if	(mod.cli)	{

										cli[cmd]	=	mod.cli;

								}

								if	(mod.api)	{

										api[cmd]	=	mod.api;

								}

After	 the	forEach	 loop	 is	 finished	 and	 all	 commands	 are	 loaded	 we	 can	 set

lounger.loaded	 to	true.	 This	 will	 prevent	 the	 checks	 we	 added	 previously	 from

throwing:

						lounger.loaded	=	true;

As	last	step	we	resolve	the	Promise:

resolve(lounger);

The	whole	function	lounger.load:

lounger.load	=	function	load	()	{

		return	new	Promise((resolve,	reject)	=>	{

				fs.readdir(__dirname,	(err,	files)	=>	{

						files.forEach((file)	=>	{

								if	(!/\.js$/.test(file)	||	file	===	'lounger.js')	{

										return;

								}

								const	cmd	=	file.match(/(.*)\.js$/)[1];

								const	mod	=	require('./'	+	file);

								if	(mod.cli)	{

										cli[cmd]	=	mod.cli;

								}

								if	(mod.api)	{

										api[cmd]	=	mod.api;

								}

						});

						lounger.loaded	=	true;

						resolve(lounger);

				});

		});

};

We	almost	forgot	to	export	lounger,	so	we	add	a	module.exports	at	the	end	of	the

file:

module.exports	=	lounger;

We	can	already	use	the	code:

$	node

>	const	lounger	=	require('./lib/lounger.js');	

lounger.load().then(console.log);

Promise	{	<pending>	}

>	{	loaded:	true,	version:	'1.0.0',	load:	[Function:	load]	}

>	lounger.commands

{	isonline:	[Function:	isOnline]	}

>	lounger.cli

{	isonline:	[Function:	cli]	}

>	lounger.commands.isonline('http://localhost:5984').then(console.log);

Promise	{	<pending>	}

>	{	'http://localhost:5984':	true	}

The	last	step	in	this	section	is	to	make	lounger	usable	on	the	terminal	itself.	For	this	task
we’ve	created	 the	bin	folder	already.	Time	to	put	a	file	called	lounger-cli.js	into

bin!

npm	 has	 a	 nice	 feature:	 if	 we	 add	 a	 JavaScript	 file	 to	 a	 property	 called	bin	 in	 the

package.json	of	a	module,	npm	will	add	 it	 to	our	PATH	 if	we	are	 installing	 the	package

globally	(e.g.	with	npm	install	-g	lounger).

If	we	have	the	bin-property	defined	and	the	lounger	is	globally	installed,	it	gets	available
as	lounger	(which	is	our	package	name)	on	the	terminal,	quite	comfortable!	To	inform

the	 user	 that	 a	 package	 is	 intended	 to	 get	 installed	 globally,	 we	 can	 add
preferGlobal:	 true	 to	 the	package.json	 (see	 also:

https://docs.npmjs.com/files/package.json#preferglobal).

To	enable	the	two	features	we	add	these	two	lines	to	our	package.json:

		"bin":	"./bin/lounger-cli",

		"preferGlobal":	true,

Additionally	 we	 have	 to	make	bin/lounger-cli	 executable,	 if	we	 are	 on	Linux	or

OSX:

$	chmod	+x	bin/lounger-cli

The	 first	 line	 of	 our	lounger-cli	 file	will	 be	 a	 “shebang	 line”,	 it	 tells	Linxux/Unix

shell	users	that	of	Linux/Unix	users	that	it	must	run	our	file	with	Node.js:

#!/usr/bin/env	node

Afterwards	we	load	lib/lounger.js,	the	core	of	our	command	line	tool:

const	lounger	=	require('../lib/lounger.js');

The	 next	 step	 is	 to	 parse	 our	 command	 line	 arguments.	 In	 this	 case	 we	 are	 using	 the
module	nopt	to	parse	the	command	line	arguments	(install	it	with	$	npm	i	--save

nopt).	It	would	be	possible	to	try	to	parse	the	arguments	on	our	own,	but	a	battle	proven

https://docs.npmjs.com/files/package.json#bin
https://docs.npmjs.com/files/package.json#preferglobal

module	 like	nopt	 offers	 a	 lot	 more	 features	 and	 is	 easier	 to	 use.	 We	 get	 the	 passed

command	by	accessing	parsed.argv.remain:

const	nopt	=	require('nopt');

const	parsed	=	nopt({},	{},	process.argv,	2);

const	cmd	=	parsed.argv.remain.shift();

The	next	step	 is	 to	boot	 the	client	by	calling	lounger.load,	which	will	bootstrap	the

client	 and	 populate	lounger.commands	 and	lounger.cli.	 After	 the	 promise	 got

resolved,	we	call	the	command	that	was	passed	on	the	command	line:

lounger.load().then(()	=>	{

		lounger.cli[cmd]

				.apply(null,	parsed.argv.remain)

				.catch((err)	=>	{

						console.error(err);

				});

}).catch((err)	=>	{

		console.error(err);

});

As	every	command	returns	a	Promise,	we	catch	errors	with	catch	and	print	them	to	the

console.

We	can	now	test	our	minimalistic	command	line	client	on	the	command	line:

$	npm	install	-g	.

$	lounger	isonline	http://couchdb.example.com

http://couchdb.example.com	seems	to	be	offline	or	no	database

And	given	our	PouchDB/CouchDB	server	is	running:

$	lounger	isonline	http://localhost:5984

http://localhost:5984	seems	to	be	online

Instead	of	running	npm	install	-g	.	after	each	code	change,	you	can	also	run	npm

link	in	your	module	directory.	It	will	link	the	global	installation	to	the	current	directory,

which	means	that	every	change	is	immediately	available,	as	long	as	the	directory	does	not
change.

Choose	your	own	flavours
There	are	countless	good	argument	parsing	libraries	on	npm,	some	alternatives	to	nopt	are:	commander,

optimist	and	yargs.

That	was	 the	 first	basic	building	block	 for	our	command	 line	client,	but	we	are	 still	 far
away	 from	 a	 product	 that	 our	 users	 would	 really	 love	 and	 promote.	We	will	 fix	 those
issues	(error	handling,	help,	documentation)	in	the	next	sections.	The	code	for	the	current
section	is	available	at	sourcecode/client-bootstrap.

Error	handling
We	already	learned	in	[_you_never_get_stuck]	that	no	user	enjoys	cryptic	error	messages
and	stack	traces.	Sadly	that	is	still	the	case	for	our	lounger	application	and	making	the

application	more	accessible	should	be	our	first	priority.

Right	now	lounger	does	not	do	anything	about	wrong	input	for	the	isonline	command:

$	lounger	isonline	ragrragr

$

Another	 caveat	 to	 consider	 is,	 are	 we	 handling	 errors	 correctly	 so	 people	 can	 use	 the
command	line	client	in	their	bash	scripts?

$	lounger	isonline	ragrragr

$	echo	$?

0

Wouldn’t	it	be	nicer	if	the	users	would	get	a	hint	about	the	correct	usage	of	the	program
right	away,	without	opening	any	documentation?	Nobody	enjoys	sitting	in	front	of	a	black
terminal	having	no	 idea	what	 to	do	(see	[_you_never_get_stuck]).	While	we	are	at	it	we
can	 also	 fix	 the	 wrong	 exit	 code	 which	 is	 currently	 signalling	 a	 successful	 executed
program	(see	also	[_it_supports_powerusers_exit_codes]).

Why	isn’t	our	console.error	call	 in	bin/lounger-cli	printing	anything?	Turns

out	we	introduced	a	subtle	bug:	we	forgot	the	.catch	for	our	Promise	returning	call	in

lib/isonline.js.	Given	the	API	function	isOnline	rejects	the	Promise,	we	have

no	handler	in	the	function	cli	to	take	care	of	it.	No	problem,	we’ll	add	the	.catch	right

now:

function	cli	(url)	{

		return	new	Promise((resolve,	reject)	=>	{

				isOnline(url).then((results)	=>	{

						//	print	on	stdout	for	terminal	users

						Object.keys(results).forEach((entry)	=>	{

								let	msg	=	'seems	to	be	offline	or	no	database	server';

								if	(results[entry])	{

										msg	=	'seems	to	be	online';

								}

								console.log(entry,	msg);

								resolve(results);

						});

				}).catch(reject);		//	add	the	missing	catch

		});

}

exports.cli	=	cli;

Our	next	try	is	a	bit	more	successful:

$	lounger	isonline	ragrragr

[Error:	Invalid	URI	"ragrragr"]

Not	 sure	 if	you	are	happy	with	 it…		 I’m	not!	 Just	 imagine	 someone	 that	has	never	used
Node.js	 or	 the	 Terminal.	 Maybe	 even	 someone	 that	 is	 completely	 new	 to	 computers.
Invalid	URI	 won’t	 help	 them	much	 to	 get	 their	 task	 done.	 Twenty	 years	 ago	 they

would	have	had	 to	get	a	book	from	the	 library	 in	order	 to	 find	out	what	an	URI	 is,	and
today	they	would	have	to	google	for	it.	Useful	time	they	could	have	fun	with	our	CLI	and
get	things	done!

Gladly	we	can	fix	it	by	adding	validations	for	the	arguments	in	isonline.js.

If	the	user	does	not	provide	a	url	to	the	CLI	we	are	creating	a	new	error	with	the	message
Usage:	 lounger	 isonline	 <url>	 which	 describes	 how	 they	 have	 to	 use	 the

command.	We	are	setting	the	type	of	the	error	to	EUSAGE,	which	will	be	important	later.

In	 lounger	 all	 errors	 that	 are	 thrown	because	 the	user	made	wrong	 input	 are	getting	 the
type	EUSAGE.	All	other	cases	where	we	introduced	bugs	don’t	get	the	type	EUSAGE:

function	cli	(url)	{

		return	new	Promise((resolve,	reject)	=>	{

				if	(!url)	{

						const	err	=	new	Error('Usage:	lounger	isonline	<url>');

						err.type	=	'EUSAGE';

						return	reject(err);

				}

The	 less-than	 sign	 and	 greater-than	 sign	 around	 the	 url	 indicate	 that	url	 is	 a	 required

argument	and	not	optional.	The	 last	command	 in	 the	block	 rejects	 the	Promise	with	our
error	and	returns,	in	order	to	prevent	the	execution	of	following	code.

Early	returns	are	useful	to	reduce	cyclomatic	complexity.	Cyclomatic	complexity	appears	where	if	and	else
blocks	 are	 nested,	which	makes	 it	 harder	 for	 the	 human	 brain	 to	 reason	 about	 the	 flow	 of	 the	 program
execution.

Additionally	we	have	to	check	if	the	url	is	a	valid	url:

				if	(!/^(http:|https:)/.test(url))	{

						const	err	=	new	Error([

								'invalid	protocol,	must	be	https	or	http',

								'Usage:	lounger	isonline	<url>'

].join('\n'));

						err.type	=	'EUSAGE';

						return	reject(err);

				}

In	 this	 case	 we	 are	 setting	 the	 error	 type	 to	EUSAGE	 again	 and	 reject	 the	 Promise.

Additionally	we	are	telling	the	user	that	we	expect	a	valid	url	with	a	protocol	that	is	usable
for	us.

On	our	next	try	we	will	get	a	slightly	better	result:

$./bin/lounger-cli	isonline	dsf

{	[Error:	invalid	protocol,	must	be	https	or	http

Usage:	lounger	isonline	<url>]	type:	'EUSAGE'	}

As	we	 reject	 the	 promise,	 the	console.error	 that	we	 added	 in	 in	bin/lounger-

cli	prints	the	error	object.	By	adding	a	few	lines	of	code	we	can	format	it,	so	humans	can

read	 it	 better.	We	will	 install	 the	npmlog	 logger	 for	 it	 (hint:	npm	i	 is	 short	 for	npm

install):

$	npm	i	--save	npmlog

We	 require	 it	 at	 the	 top	 of	bin/lounger-cli,	 the	 file	where	we	 catch	 the	 rejected

Promise:

const	log	=	require('npmlog');

As	 a	 next	 step	 we	 add	 the	 function	errorHandler	 to	bin/lounger-cli.	 If	 the

error	is	a	usage	error	(of	type	EUSAGE),	we	log	the	message	and	exit	with	error	code	1.

All	other	errors	are	logged	using	log.error(err)	for	now:

function	errorHandler	(err)	{

		if	(!err)	{

				process.exit(1);

		}

		if	(err.type	===	'EUSAGE')	{

				err.message	&&	log.error(err.message);

				process.exit(1);

		}

		log.error(err);

		process.exit(1);

}

Now	we	have	 to	 switch	 from	 the	old	console.error	 call	 to	our	new	error	handling

function:

lounger.load().then(()	=>	{

		lounger.cli[cmd]

				.apply(null,	parsed.argv.remain)

				.catch(errorHandler);

}).catch(errorHandler);

Cool,	let’s	see	if	it	works:

$	lounger	isonline

ERR!	Usage:	lounger	isonline	<url>

$	echo	$?

1

That	looks	a	lot	better!

Figure	2.	A	usage	error	resulting	from	providing	wrong	input	to	the	CLI

We	 still	 did	 not	 touch	 other	 errors:	 errors	 from	 dependencies	we	 use,	 or	 evil	 bugs	 that
sneak	 in,	 like	 reference	 errors.	 To	 simulate	 such	 an	 error	 we	 can	 add	 a	 call	 to	 a	 non-
existing	function	in	the	cli	function:

function	cli	(url)	{

		return	new	Promise((resolve,	reject)	=>	{

				doesNotExist();

If	we	now	run	the	command	line	client	we	get:

$	lounger	isonline	http://example.com

ERR!	ReferenceError:	doesNotExist	is	not	defined

If	I	just	downloaded	the	command	line	client	and	tried	to	use	it,	I	would	be	quite	puzzled.
Maybe	I	got	a	new	job	and	tried	to	use	the	same	tool	my	coworkers	use,	but	downloaded	a
newer	release	with	bugs.	I	would	be	stuck,	with	no	further	notice	how	to	continue.	To	be
honest,	if	I	hadn’t	programmed	in	JavaScript	for	years	this	stacktrace	would	really	puzzle
me!	For	most	people	these	are	rocks	in	their	way	where	they	just	stop	using	our	program
and	switch	to	an	alternative.	Very	few	go	on	the	journey	to	find	out	where	they	can	submit
an	issue	or	even	write	a	PR.	Usually	computers	are	too	frustrating	and	people	don’t	really
want	to	spend	multiple	hours	trying	to	find	someone	to	help	them	with	a	cryptic	message.
So	what	 about	making	 this	 process	 as	 easy	 as	 possible,	 reducing	 the	 friction	where	we
can?

npm	itself	supports	a	bugs	property	in	the	package.json.	If	we	add:

		"bugs":	{

				"url":	"http://example.com/lounger/issues"

		},

to	 the	package.json	 of	 lounger,	 a	 call	 to	$	 npm	 bugs	 will	 open

http://example.com/lounger/issues	 in	 a	 browser	 for	 us.	 Cool,	 we	 got	 a

central	place	where	we	are	storing	the	url	to	our	issue	tracker.	We	can	also	add	the	url	to
our	stack	traces,	in	order	to	make	submitting	bugs	for	our	users	easier.	We	need	to	require
the	package.json	in	bin/lounger-cli,	the	file	where	we	print	our	errors	anyway:

const	pkg	=	require('./package.json');

By	altering	our	errorHandler	we	make	it	print	full	stack	traces.	Additionally	we	add

ask	the	user	to	open	an	issue	as	it	is	pretty	clear	right	now	that	the	error	was	not	a	usage
error	that	was	caught	by	our	validations:

function	errorHandler	(err)	{

		if	(!err)	{

				process.exit(1);

		}

		if	(err.type	===	'EUSAGE')	{

				err.message	&&	log.error(err.message);

				process.exit(1);

		}

		err.message	&&	log.error(err.message);

		if	(err.stack)	{

				log.error('',	err.stack);

				log.error('',	'');

				log.error('',	'');

				log.error('',	'lounger:',	pkg.version,	'node:',	process.version);

				log.error('',	'please	open	an	issue	including	this	log	on	'	+	

pkg.bugs.url);

		}

		process.exit(1);

}

Ok,	next	try:

http://example.com/lounger/issues

$	lounger	isonline	http://example.com

ERR!	doesNotExist	is	not	defined

ERR!	ReferenceError:	doesNotExist	is	not	defined

ERR!					at	/home/rocko/clibook/sourcecode/error-

handling/lib/isonline.js:35:7

ERR!					at	cli	(/home/rocko/clibook/sourcecode/error-

handling/lib/isonline.js:34:10)

ERR!					at	/home/rocko/clibook/sourcecode/error-handling/bin/lounger-

cli:15:6

ERR!

ERR!

ERR!	lounger:	1.0.0	node:	v4.2.3

ERR!	please	open	an	issue	including	this	log	on	

http://example.com/lounger/issues

Awesome!	The	stacktrace	with	 line	numbers	 is	useful	 for	us.	The	current	version	of	 the
program	and	the	Node.js	environment	help	us,	too.	In	case	the	command	line	client	really
hits	 a	wall,	we	 receive	 a	 lot	 of	 informations	 in	 order	 to	 debug	 the	 process.	 Even	more
important:	the	user	get’s	all	the	information	needed	to	create	an	issue.	We	remove	a	lot	of
friction	 from	 the	 process	 by	 directly	 pointing	 to	 the	 issue	 tracker	 and	 providing	 all
information	that	is	needed	to	describe	the	bug	-	no	long	back	and	forth	about	the	current
Node	version	or	the	missing	logfile!

The	code	for	this	section	can	be	found	at	sourcecode/error-handling.

JSON	support	and	Shorthands
JSON	support	is	useful	for	all	users	that	want	to	take	the	output	from	the	CLI	and	process
it	 programmatically	 with	 their	 own	 tools	 (we	 talked	 about	 that	 in
[_it_supports_powerusers_json]	in	the	first	part	of	the	book).	By	adding	a	--json	flag	to

our	 command	isonline	we	 can	 add	 this	 useful	 feature	with	 a	 few	 lines	 of	 code.	We

have	to	tell	our	argument	parser	about	it,	in	this	case,	we	are	telling	nopt	that	we	want	to

have	--json	handled	as	a	boolean	in	bin/lounger-cli:

const	parsed	=	nopt({

		'json':	[Boolean]

},	{'j':	'--json'},	process.argv,	2);

Based	 on	 the	 type	Boolean	 nopt	 will	 automatically	 also	 add	--no-json	 for	 us,

which	will	come	handy	when	we	add	additional	configuration	by	file	 later.	Additionally
we	register	a	shorthand	for	our	power	users,	they	can	also	use	-j	instead	of	—json.

We	are	then	passing	the	result	parsed	into	lounger.load:

const	parsed	=	nopt({

		'json':	[Boolean]

},	{'j':	'--json'},	process.argv,	2);

const	cmd	=	parsed.argv.remain.shift();

lounger.load(parsed).then(()	=>	{

		lounger.cli[cmd]

				.apply(null,	parsed.argv.remain)

				.catch(errorHandler);

}).catch(errorHandler);

longer.load	adds	a	lounger.config.get	command	and	makes	it	available	for	us

as	part	of	the	bootstrap:

lounger.load	=	function	load	(opts)	{

		return	new	Promise((resolve,	reject)	=>	{

				lounger.config	=	{

						get:	(key)	=>	{

								return	opts[key];

						}

				};

				fs.readdir(__dirname,	(err,	files)	=>	{

We	require	lounger.js	in	our	file	isonline.js:

const	lounger	=	require('./lounger.js');

As	 last	 step	we	 the	 check	 for	 the	 json-flag	 in	 our	 function	cli	 after	we	got	 the	 results

back:

				isOnline(url).then((results)	=>	{

						if	(lounger.config.get('json'))	{

								console.log(results);

								resolve(results);

								return;

						}

That’s	it!	We	can	test	the	command:

$	lounger	isonline	http://example.com

http://example.com	seems	to	be	offline	or	no	database	server

$	lounger	isonline	http://example.com	--json

{	'http://example.com':	false	}

$	lounger	isonline	http://example.com	-j

{	'http://example.com':	false	}

Our	users	can	now	pipe	the	output	on	their	terminals	into	other	consumers	and	process	the
results.	We	also	added	our	first	command	line	flag	to	lounger	to	modify	the	execution	of	a
command	 -	 great!	 The	 code	 and	 tests	 for	 this	 section	 are	 in	sourcecode/json-

flags.

Documentation
The	last	step	to	finish	our	command	isonline	is	to	add	proper	documentation.	We	will

write	 the	 documentation	 in	 Markdown	 and	 need	 documentation	 for	 the	 API	 and	 CLI
commands.	 The	 API	 docs	 will	 live	 in	doc/api	 and	 the	 CLI	 commands	 will	 live	 in

doc/cli.	I	know	that	most	programmers	hate	writing	documentation,	but	it	will	help	us

a	lot:	new	users	will	be	able	to	get	up	and	running	easier	and	we	won’t	lose	them	before
they	 had	 the	 chance	 to	 enjoy	 our	 product.	 Additionally,	 we	 make	 our	 lives	 easier	 by
documenting	 the	 functionality	 once,	 so	 people	 don’t	 have	 to	 open	 issues	 or	 ask	 in	 chat
how	 they	 can	 use	 a	 command.	 Basically	 a	 win-win	 situation.	We	 start	 with	doc/api

/lounger-isonline.md,	 which	 describes	 the	 API	 that	 is	 available	 at

lounger.commands:

lounger-isonline(3)—check	if	a	database	is	online

==

The	heading	describes	our	command	as	lounger-isonline(3)	and	then	adds	a	short

explanation	what	the	command	is	about.	The	number	in	brackets	describes	the	type	of	the
section.	For	a	man-page	a	Library	Function	is	noted	by	a	3	and	a	User	Command	would

be	a	1	(spoiler:	our	CLI	command	is	a	User	Command).

The	next	section	describes	how	our	users	can	use	the	command:

##	SYNOPSIS

				lounger.commands.isonline(url)

The	last	part	is	a	detailed	description	of	how	the	command	works:

##	DESCRIPTION

Check	if	a	CouchDB	/	PouchDB	database	is	available	on	the	current

network.

url:

The	url	must	be	a	`String`	and	must	be	a	url	using	the	http	or	https

protocol.

The	command	returns	a	promise.	The	promise	returns	an	Object.	The	key

of	the	Object	is	the	provided	url	and	the	values	are	of	type	`Boolean`.

`true`	indicates	an	online	CouchDB	/	PouchDB	node.

That’s	 it	 for	 the	 API	 part,	 we	 can	 now	 add	 the	 text	 for	doc/cli/lounger-

isonline.md:

lounger-isonline(1)—check	if	a	database	is	online

==

				lounger	isonline	<url>	[--json]

##	DESCRIPTION

		<url>:

Check	if	a	database	node	is	currently	online	or	available.

`isonline`	prints	the	result	as	human	readable	output.	JSON	output	is

also	supported	by	passing	the	`--json`	flag.

With	 the	 small	1	 in	lounger-isonline(1)	we	 are	 signalling	 that	 this	 help	 section

explains	a	User	Command.	The	less-than	and	greater-than	symbols	for	<url>	 show	the

user	that	url	is	a	mandatory	argument	-	without	it	the	command	won’t	work.	The	square

brackets	of	[--json]	mean	that	the	json-flag	is	an	optional	command.

As	we	 got	 the	 sources	 for	 our	 documentation,	we	 can	 start	 to	 build	 our	 documentation
from	our	sources	with	marked	and	marked-man:

$	npm	i	--save-dev	marked	marked-man

A	Makefile	would	 be	 a	 great	 fit	 for	 generating	 the	 documentation	 from	 the	 source,	 but
sadly	it	is	hard	to	get	Makefiles	to	work	on	Windows,	so	we	will	write	our	build	steps	in
JavaScript.	 In	 the	root	directory	of	 lounger,	we	create	 the	file	build.js.	Additionally,

we	 have	 to	 install	mkdirp	 and	rimraf,	mkdirp	 provides	 the	 functionality	we	 know

from	 the	 Linux	 command	mkdir	-p	 in	 a	 cross-platform	 compatible	way:	 it	 creates	 a

directories	 and	 subdirectories	 in	 a	 recursive	 way.	 The	 module	rimraf	 brings	 us	 the

equivalent	 of	rm	-rf	 to	 the	Node.js	 platform:	 deleting	 directories	 in	 a	 recursive	way.

Additionally	 we	 will	 use	 the	 module	glob	 to	 match	 all	 needed	 files	 for	 our

documentation	build.

$	npm	i	--save-dev	mkdirp	rimraf	glob

Our	first	function	will	be	a	function	to	clean	a	fresh	folder	structure	where	we	can	save	our
man-pages:

'use	strict';

const	mkdirp	=	require('mkdirp');

const	rimraf	=	require('rimraf');

const	glob	=	require('glob');

const	path	=	require('path');

function	cleanUpMan	()	{

		rimraf.sync(__dirname	+	'/man/');

		//	recreate	the	target	directory

		mkdirp.sync(__dirname	+	'/man/');

}

We	have	to	find	out	which	markdown	files	are	available	for	the	compile.	Our	sources	for
documentation	are	at	doc/api	or	at	doc/cli.	Additionally	we	will	have	some	content

in	doc/website	which	is	specific	to	the	website,	i.e.	the	content	for	the	index.html.

The	 function	getSources	helps	us	 to	get	 the	full	path	to	 the	markdown	files	for	each

type	of	our	 sources	 (api,	doc,	website).	 It	 returns	 the	 relative	path	of	 the	matching

glob	and	then	uses	the	function	path.resolve	to	get	the	full	path	in	a	cross-platform

compatible	way.

function	getSources	(type)	{

		const	files	=	glob.sync('doc/'	+	type	+	'/*.md');

		return	files.map(file	=>	path.resolve(file));

}

The	object	sources	stores	an	array	of	the	found	files	for	each	type:

const	sources	=	{

		api:	getSources('api'),

		cli:	getSources('cli'),

		websiteIndex:	getSources('website'),

};

We	are	able	to	clean	up	our	target	directory	now	and	to	get	a	list	of	filenames	that	we	want
to	convert.	We	still	need	to	find	out	the	target	path	and	filename	for	the	converted	files.
Man-pages	 have	 different	 file	 endings	 depending	 of	 the	 kind	 of	 functionality	 they
describe.	Our	man-pages	for	the	CLI	would	get	the	ending	.1	(User	Commands)	and	our

API	 function	 would	 get	 the	 ending	.3	 (Library	 Functions).	 Additionally	 we	 have	 to

change	 the	/doc/cli/	 and	/doc/api/	 in	 the	path	of	 the	 file	 to	our	 target	directory

/man/.	We	have	to	take	special	care	of	the	path-separators.	On	Windows	the	separators

are	a	\\,	instead	of	/.	That	means	the	path	doc/api	gets	doc\\api	on	Windows.	The

good	news	is	that	we	can	access	the	current	path-	separator	using	path.sep	in	Node.js

(the	separator	is	provided	by	the	core	module	path):

function	getTargetForManpages	(currentFile,	type)	{

		let	target;

		//	set	the	right	section	for	the	man	page	on	unix	systems

		if	(type	===	'cli')	{

				target	=	currentFile.replace(/\.md$/,	'.1');

		}

		if	(type	===	'api')	{

				target	=	currentFile.replace(/\.md$/,	'.3');

		}

		//	replace	the	source	dir	with	the	target	dir

		//	do	it	for	the	windows	path	(doc\\api)	and	the	unix	path	(doc/api)

		target	=	target

				.replace(['doc',	'cli'].join(path.sep),	'man')

				.replace(['doc',	'api'].join(path.sep),	'man');

		return	target;

}

Right	 now	we	 just	want	 to	 create	man-pages	 from	 our	 documents	 in	 the	api	 and	cli

folder.

Based	 on	 these	 building	 blocks	 we	 can	 create	 the	 final	 function	buildMan	 that	 will

finally	 build	 our	 man-pages.	 It	 will	 make	 use	 of	 the	 functions	 we	 just	 created	 and

additionally	 spawn	a	child	process	which	compiles	 the	markdown	 files	using	marked-

man.	We	will	use	the	function	spawnSync	from	Node	core	to	spawn	the	processes.	As

we	write	the	result	to	the	filesystem,	we	have	to	require	the	fs	module,	too:

const	fs	=	require('fs');

const	spawnSync	=	require('child_process').spawnSync;

The	first	job	is	cleaning	up	to	get	a	new	target	directory	without	any	files	from	previous
builds.	We	then	iterate	over	our	sources	and	get	the	target	for	our	new	generated	file.	The
file	 is	 then	written	 to	 the	hard	disk	using	fs.writeFileSync.	In	case	of	the	website

index	we	stop	the	execution	as	we	don’t	want	to	do	use	the	website	index	for	a	man-page
right	now.	In	the	next	iteration	we	could	definitely	add	a	main	page	for	the	lounger	man-
pages:

function	buildMan	()	{

		cleanUpMan();

		Object.keys(sources).forEach(type	=>	{

				sources[type].forEach(currentFile	=>	{

						if	(type	===	'websiteIndex')	{

								return;

						}

						//	convert	markdown	to	man-pages

						const	out	=	spawnSync('node',	[

								'./node_modules/marked-man/bin/marked-man',

								currentFile

]);

						const	target	=	getTargetForManpages(currentFile,	type);

						//	write	output	to	target	file

						fs.writeFileSync(target,	out.stdout,	'utf8');

				})

		});

}

buildMan();

With	buildMan();	in	the	last	line,	we	kick	off	the	build	process	every	time	we	run	the

script	with	Node.	A	few	modifications	to	our	package.json	could	make	it	a	npm	script

and	run	the	build	before	a	publish,	so	our	users	don’t	have	to	compile	anything	on	their

own	as	part	of	the	installation.	This	ensures	that	every	user	really	gets	the	same	content	of
the	package	and	makes	installations	faster.

I n	package.json	 we	 modify	 the	scripts	 section	 and	 add	 entries	 for	build	 and

prepublish.	 The	prepublish	 entry	 is	 a	 special	 hook	 for	 npm	 –	 it	will	 run	 every

time	before	we	publish	the	package	to	the	registry:

		"scripts":	{

				"test":	"mocha	-R	spec",

				"docs":	"node	./build",

				"prepublish":	"npm	run	docs"

		},

npm	also	offers	a	nice	feature	for	man-pages:	npm	can	install	them	for	the	user	so	they	are
available	 on	 the	 terminal	 with	man	<command>	 for	 Linux/Unix	 users.	 In	 order	 to	 do

that,	 we	 have	 to	 add	 another	 entry	 to	 our	package.json,	 the	man	 entry	 in	 the

directory	section:

		"directories":	{

				"man":	"./man"

		},

The	entry	points	to	our	local	man-pages	directory.	If	you	are	on	Unix/Linux	you	can	try	if
the	man-pages	work	now:

$	npm	run	docs

>	lounger@1.0.0	docs	/home/rocko/clibook/sourcecode/documentation

>	node	./build

$	npm	install	-g	.

>	lounger@1.0.0	prepublish	/home/rocko/clibook/sourcecode/documentation

>	npm	run	docs

>	lounger@1.0.0	docs	/home/rocko/clibook/sourcecode/documentation

>	node	./build

/home/rocko/.nvm/versions/node/v4.2.3/bin/lounger	->	

/home/rocko/.nvm/versions/node/v4.2.3/lib/node_modules/lounger/bin/lounger-

cli

/home/rocko/.nvm/versions/node/v4.2.3/lib

└──	lounger@1.0.0

$	man	lounger-isonline

Figure	3.	The	man-page	for	lounger,	our	command	line	client

It	is	also	possible	to	select	a	specific	section:

$	man	3	lounger-isonline

$	man	1	lounger-isonline

For	our	html-based	documentation	we	have	 to	add	 the	html	specific	part	now.	We	have
create	 a	 folder	 called	website	 in	 the	 doc	 folder	 of	 our	 module.	 It	 will	 contain	 the

templates	for	the	website	that	are	used	to	“frame“	the	document	output.

Into	the	folder	called	website	we	put	a	file	called	template.html	with	some	basic

markup,	and	most	importantly,	placeholders!

<!doctype	html>

<html	lang="en">

<head>

		<meta	charset="utf-8">

		<title>The	lounger	manual	&	documentation</title>

</head>

<body>

		<div	class="wrapper">

				lounger

				<div	class="content">

						__CONTENT__

				</div>

		</div>

		<nav	class="toc-container">

				<div	class="toc	main-toc">

						__TOC__

				</div>

		</nav>

</body>

</html>

We	need	to	create	some	content	for	the	root	of	our	website	to	welcome	the	user.	I	will	just
provide	 a	 very	 short	 example.	 In	 general	 the	 landing	page	 should	give	 the	 user	 an	 idea
what	the	command	line	client	is	about	and	maybe	also	demo	it.	A	screencast	is	a	great	way
to	demo	some	of	the	core	features.	For	some	inspiration	what	to	put	on	the	site,	feel	free	to
visit	http://apache.github.io/couchdb-nmo,	which	is	the	page	for	the	command	line	client	I
wrote	last	year.	Next	to	our	template	in	doc/website	we	add	the	bespoke	index	page	as

index.md:

#	Welcome	to	Lounger

Lounger	is	a	friendly	administration	tool	for	CouchDB	and	PouchDB.

```

#	you	will	need	Node.js	>	4	for	lounger

npm	install	-g	lounger

```

Things	you	can	do	with	lounger:

```

#	check	if	a	CouchDB	/	PouchDB	instance	is	online

lounger	isonline	http://example.com

```

The	page	is	minimalistic	but	gives	a	brief	overview	what	lounger	is	about.	It	also	shows
how	our	visitors	can	install	it	and	gives	a	hint	that	they	need	Node.js	–	not	everyone	has
Node.js	installed	and	some	people	may	have	never	heard	of	npm.	Remember:	our	goal	is
to	make	everything	as	easy	as	possible	for	new	users	–	they	never	get	stuck.

http://apache.github.io/couchdb-nmo

In	order	 to	build	 the	website	we	have	 to	add	some	code	 to	 the	build.js.	We	start	by

adding	another	cleanup-function	for	our	website	 files,	so	we	can	start	with	a	blank	slate
every	time:

function	cleanUpWebsite	()	{

		rimraf.sync(__dirname	+	'/website/');

		mkdirp.sync(__dirname	+	'/website/');

}

Our	 website	 has	 different	 targets	 than	 the	 man-pages.	 We	 add	 a	 new	 function,
getTargetForWebsite.	Currently	our	markdown	files	are	prefixed	with	lounger-,

which	comes	handy	for	the	man-pages,	but	is	not	very	useful	for	our	website.	Instead	we
want	to	prefix	them	with	their	type,	an	API	document	would	get	prefixed	by	api-.	This

way	we	 can	 put	 pages	 for	 the	 API	 next	 to	 the	 ones	 for	 the	 CLI,	 which	makes	 linking
easier.	 The	 first	 lines	 of	 the	 function	getTargetForWebsite	will	 take	 care	 of	 that

task	and	replace	the	lounger-	prefix	with	a	prefix	specific	to	the	type	of	the	document.

After	we	replaced	the	prefix,	we	set	the	file	ending	from	.md	 to	.html.	The	final	target

folder	 for	 our	 compiled	 results	 will	 be	./website,	 so	 we	 have	 to	 take	 care	 that	 the

directories	are	set	up	right.	The	difference	to	getTargetForManpages	is	that	we	use

the	website	 folder	 instead	 of	man	 and	 that	 we	 also	 take	 care	 of	 the	 path	 for	 the

doc/website/index.md	file:

function	getTargetForWebsite	(currentFile,	type)	{

		let	target	=	currentFile;

		//	modifiy	the	filename	a	bit	for	our	html	file:

		//	prefix	all	cli	functions	with	cli-	instead	of	lounger-

		//	prefix	all	api	functions	with	api-	instead	of	lounger-

		if	(type	===	'cli')	{

				target	=	currentFile.replace(/lounger-/,	'cli-');

		}

		if	(type	===	'api')	{

				target	=	currentFile.replace(/lounger-/,	'api-');

		}

		//	set	the	file	ending	to	html

		target	=	target.replace(/\.md$/,	'.html');

		//	replace	the	source	dir	with	the	target	dir

		target	=	target

				.replace(['doc',	'cli'].join(path.sep),	'website')

				.replace(['doc',	'api'].join(path.sep),	'website')

				.replace(['doc',	'website'].join(path.sep),	'website');

		return	target;

}

The	 last	 item	 which	 is	 missing	 for	 our	 website	 is	 something	 like	 a	 table	 of	 contents.
getTocForWebsite	will	create	a	listing	of	our	API	and	CLI	functions.	Later	we	will

insert	the	table	of	contents	into	the	TOC	placeholder	of	the	template.

The	TOC	itself	gets	a	nested	list	of	the	files	we	compile.	In	the	future	it	might	make	sense
to	 replace	 the	 whole	 system	 with	 a	 template	 engine	 like	handlebars,	 jade	 or

Nunjucks.	 I	 could	definitely	write	a	 second	book	about	 static	website	generation	plus

the	different	possible	toolchains,	but	I	try	to	keep	it	simple	and	minimalistic	for	now	and
just	use	plain	ES6	templates.

After	starting	an	unordered	list	with		we	iterate	over	the	types	of	our	sources	again.

The	files	of	our	websiteIndex	type	are	unwanted	and	we	return	early	in	their	case.	For

all	others	we	take	the	type	of	each	section	and	use	it	as	the	first	list	element.	It	shows	the
type	of	each	section	(API	or	CLI)	and	acts	as	a	heading.

After	we	got	a	heading,	we	iterate	over	each	file	from	the	current	section.	As	the	linktext
differs	a	bit	from	the	actual	hyperlink,	we	create	a	constant	called	file	and	an	additional

linktext	 constant.	 For	 both	we	must	 get	 rid	 of	 the	lounger-	 prefix.	To	 create	 the

reference	that	is	used	as	href	we	must	change	the	.md	to	a	.html	ending.	The	link	text

should	not	have	a	file	ending	at	all,	so	we	remove	the	.md	ending	for	it:

function	getTocForWebsite	()	{

		let	toc	=	'';

		Object.keys(sources).forEach(type	=>	{

				//	we	don't	want	the	index	in	our	toc	for	now

				if	(type	===	'websiteIndex')	{

						return;

				}

				toc	+=	`${type}`;

				sources[type].forEach(currentFile	=>	{

						const	prefix	=	type	===	'cli'	?	'cli-'	:	'api-';

						const	file	=	path.basename(currentFile)

								.replace('lounger-',	prefix)

								.replace(/\.md/,	'.html');

						const	linktext	=	path.basename(currentFile)

								.replace('lounger-',	'')

								.replace(/\.md/,	'');

						toc	+=	`${linktext}`;

				});

				toc	+=	'';

		});

		toc	+=	'';

		return	toc;

}

We	 can	 now	 take	 the	 small	 functions	 we	 created	 and	 create	 the	 main	 build	 function
buildWebsite	from	them.	The	constant	templateFile	describes	where	we	can	find

our	template	file	template.html	which	we	created	in	the	beginning:

const	templateFile	=	__dirname	+	'/doc/website/template.html';

The	next	 step	 is	 to	 replace	 the	placeholders	 in	 the	 templates	with	 the	generated	 table	of
contents	and	the	different	content	for	each	API	or	CLI	method.

In	buildWebsite	we	 call	cleanUpWebsite	 to	remove	any	outdated	files	as	a	first

step.	We	read	the	template	with	fs.readFileSync	and	get	the	table	of	contents.	We

then	 iterate	over	our	 sources.	This	 time	we	don’t	 spawn	a	child	process	with	marked-

man,	we	just	use	marked,	which	outputs	html.	After	we	got	the	target	for	the	current	file

of	the	website	we	replace	the	CONTENT	placeholder	with	it.	The	TOC	gets	replaced	with

the	 table	of	contents	which	 is	saved	 in	toc	at	 the	 top	of	 the	main	function.	Moving	the

read	operation	of	the	template	and	the	creation	of	the	TOC	out	of	the	loops	has	positive
effects	on	the	performance	of	our	build,	as	we	don’t	have	to	call	them	for	every	new	file.
The	rendered	content	finally	gets	written	to	the	disk	using	fs.writeFileSync	again.

The	 last	 line	 in	 the	 code	 snippet	 finally	 calls	buildWebsite	 in	 order	 to	 build	 our

website	when	we	run	build.js.

function	buildWebsite	()	{

		cleanUpWebsite();

		const	template	=	fs.readFileSync(templateFile,	'utf8');

		const	toc	=	getTocForWebsite();

		Object.keys(sources).forEach(type	=>	{

				sources[type].forEach(currentFile	=>	{

								//	convert	markdown	to	website	content

						const	out	=	spawnSync('node',	[

								'./node_modules/marked/bin/marked',

								currentFile

]);

						const	target	=	getTargetForWebsite(currentFile,	type);

						const	rendered	=	template

								.replace('__CONTENT__',	out.stdout)

								.replace('__TOC__',	toc);

						//	write	output	to	target	file

						fs.writeFileSync(target,	rendered,	'utf8');

				});

		});

}

buildWebsite();

We	 can	 now	 run	 our	 build	 again	 and	 take	 a	 look	 at	 our	website,	which	 appears	 in	 the
website	folder:

$	npm	run	docs

Figure	4.	The	minimal	website	for	lounger	generated	from	our	markdown

The	 site	 still	 misses	 some	 content	 and	 also	 a	 nice	 stylesheet.	 As	 I	 already	 mentioned,
building	websites	is	a	whole	topic	for	a	new	book	and	I	want	to	leave	it	like	this	for	now.
Feel	 free	 to	 add	 more	 content	 and	 styles	 to	 the	 website.	 Nevertheless	 we	 just	 created
something	that	we	can	deploy	to	GitHub	pages	or	any	other	hoster.	The	best	thing	about	it
is	 that	 we	 can	 ship	 it	 with	 our	 command	 line	 client	 as	 additional	 documentation	 –	 for
everyone	 who	 can’t	 use	 or	 doesn’t	 like	 man-pages.	 We	 will	 use	 both	 types	 of
documentation	in	our	next	section	when	we	create	a	help	system.

The	code	for	this	section	can	be	found	at	sourcecode/documentation.

More	Help
We	got	some	documentation,	but	there	are	still	some	rough	edges	in	lounger.	If	we	try	to
access	a	command	which	does	not	exist,	the	user	doesn’t	get	any	advice	how	to	continue:

$	lounger	foobar

If	a	user	calls	lounger	with	no	arguments	at	all	they	also	don’t	get	support:

$	lounger

What’s	 missing	 is	 a	 help	 page	 which	 explains	 how	 our	 users	 can	 get	 their	 task	 done.
Additionally	 it	 would	 be	 really	 awesome	 if	 they	 could	 open	 our	 documentation	 (web-
pages	or	man-pages)	right	from	the	terminal.	Our	users	shouldn’t	have	to	care	about	man-
pages	or	have	 to	 find	out	where	we	host	our	website.	The	desired	behaviour	of	 lounger
would	be:

1.	 The	CLI	 prints	 a	 general	 help	message	 if	 it	was	 called	without	 a	 command	 or	 if	 a
passed	command	doesn’t	exist.	It	gives	the	user	a	hint	how	to	proceed	further	to	get
their	task	done.

2.	 It	is	easy	to	get	additional	help	for	a	command

We	start	by	creating	a	new	library	function,	lib/help.js.	The	first	function	will	print

a	friendly	help	text	to	the	user.	The	help	text	gets	constructed	in	a	helper	function	(no	pun
intended).

We	can	get	all	of	our	available	commands	by	calling	Object.keys(lounger.cli).

We	chain	a	.join(',	')	call	to	separate	each	command	with	a	comma	and	a	space:

function	getGeneralHelpMessage	()	{

		const	commands	=	Object.keys(lounger.cli).join(',	');

The	next	part	is	a	template	string	which	explains	how	to	use	lounger.	We	add	all	available
commands	which	are	exposed	on	the	command	line	interface.	We	also	explain	that	users
without	a	clue	can	run	lounger	help	together	with	the	command	they	are	interested	in

to	get	detailed	help	for	a	command.	Additionally	we	provide	an	example	how	they	would
call	the	help.

The	 final	 line	 tells	 them	 which	 version	 of	 lounger	 they	 run,	 which	 comes	 handy	 in
different	situations.	Usually	people	forget	which	version	of	a	package	they	have	installed.
The	reason	 is	simple:	nobody	can	remember	 the	exact	version	of	all	 software	 they	have
installed	right	now.	Imagine	a	user	who	just	read	a	blog	article	about	lounger	version	2.3
and	a	great	new	feature	they	want	to	try.	They	installed	lounger	some	time	ago,	but	sadly
the	command	is	just	available	since	version	2.3	which	got	released	three	days	ago.	In	this
case	they	get	immediate	feedback	that	they	run	on	an	older	version.

Here	is	the	whole	function	getGeneralHelpMessage:

function	getGeneralHelpMessage	()	{

		const	commands	=	Object.keys(lounger.cli).join(',	');

		const	message	=	`Usage:	lounger	<command>

The	available	commands	for	lounger	are:

${commands}

You	can	get	more	help	on	each	command	with:	lounger	help	<command>

Example:

lounger	help	isonline

lounger	v${lounger.version}	on	Node.js	${process.version}`;

		return	message;

}

The	next	function	we’ll	build	will	try	to	open	the	man-page	if	possible.	It	will	fallback	to
the	website	version	for	Windows	users.

The	module	opener	does	a	great	 job	to	open	files	on	different	operating	systems.	This

also	applies	to	html	files,	as	we	want	to	open	them	in	the	default	browser	of	the	current
operating	system.	So	we	install	opener	as	our	next	dependency:

$	npm	install	--save	opener

We	then	require	opener	at	the	top	of	help.js:

const	opener	=	require('opener');

We	 also	 have	 to	 spawn	 the	man	 command	 later	 and	 find	 out	 the	 absolute	 path	 for	 our

website	files:

const	spawnSync	=	require('child_process').spawnSync;

const	path	=	require('path');

The	core	module	os	can	help	us	to	find	out	if	we	are	running	on	Windows:

const	isWindows	=	require('os').platform()	===	'win32';

We	 then	 have	 to	 spawn	 the	man	 command	 or	 open	 the	 default	 browser	 for	 the	 desired

functionality.	With	stdio:	inherit	for	the	spawn	command	we	can	see	and	interact

with	the	output	of	the	spawned	process:

function	openDocumentation	(command)	{

		if	(isWindows)	{

				const	htmlFile	=	path.resolve(__dirname	+	'/../website/cli-'	+	command	+	

'.html');

				return	opener('file:///'	+	htmlFile);

	}

		spawnSync('man',	['lounger-'	+	command],	{stdio:	'inherit'});

}

The	last	task	is	putting	all	our	helper	functions	together,	if	a	command	is	not	available,	we
print	 the	 general	 help.	 If	 the	 command	 exists,	 we	 are	 opening	 the	 man-page	 or	 the
browser,	depending	on	the	Operating	System:

exports.cli	=	help;

function	help	(command)	{

		return	new	Promise((resolve,	reject)	=>	{

				if	(!lounger.cli[command])	{

						console.log(getGeneralHelpMessage());

				}	else	{

						openDocumentation(command);

				}

				resolve();

		});

}

If	you	want	you	can	also	add	some	code	to	make	it	configurable	for	the	user	which	type	of
documentation	is	opened	for	them.	Maybe	Linux	users	prefer	the	Website	version	of	the
docs.	 We	 can	 already	 try	 the	 new	 help	 command,	 as	 it	 gets	 picked	 up	 by	 our
lounger.js	file:

Figure	5.	Our	help	command	in	action

Our	final	task	in	this	section	is	that	we	have	to	make	sure	to	print	the	general	help	in	cases
where	the	user	does	not	enter	a	command	at	all.	In	bin/lounger-cli	we	require	the

help.js	file	and	modify	the	lounger.load	call.	In	case	we	don’t	find	the	command

in	lounger.cli,	we	print	the	general	help:

const	help	=	require('../lib/help.js');

lounger.load(parsed).then(()	=>	{

		if	(!lounger.cli[cmd])	{

				return	help.cli();

		}

		lounger.cli[cmd]

				.apply(null,	parsed.argv.remain)

				.catch(errorHandler);

}).catch(errorHandler);

Congrats!	We	are	finished	with	the	help	system	now	and	made	significant	progress!	Feel
free	to	play	around	with	our	new	help	system	by	entering	these	commands:

$	lounger	blerg

$	lounger

$	lounger	help

$	lounger	help	isonline

The	code	for	this	section	is	located	at:	sourcecode/help-system.

Configuration
Requiring	our	users	 to	add	 their	 favourite	 settings	as	 flags	by	hand	every	 time	 they	use
lounger	 can	 be	 cumbersome.	A	 configuration	 file	 enables	 our	 users	 to	 save	 the	 settings
they	need	every	day	.	It	would	be	nice	if	we	could	support	this	feature	that	we	covered	in
[_it_supports_powerusers_configuration]	to	make	our	power	users	happier.

It	is	common	practice	that	command	line	tools	put	their	configuration	files	into	the	home
directory	of	the	user.	The	home-directory	is	different	for	every	Operating	System,	but	the
module	osenv	can	help	us	to	find	the	current	home	directory:

$	npm	install	--save	osenv

We	basically	have	to	see	if	a	loungerrc	configuration	exists	in	our	home	directory,	and

if	not,	we	have	to	create	an	empty	one.	We	do	that	in	lounger-cli,	in	order	to	keep	the

API	functions	free	of	 the	side	effect.	This	 is	 the	changed	lounger-cli	file	where	we

added	 a	require-call	 for	osenv	 and	 create	 a	 config	 file	 right	 after	 the	 argument

parsing.	We	also	add	the	path	to	the	config	file	to	our	parsed	arguments:

#!/usr/bin/env	node

const	lounger	=	require('../lib/lounger.js');

const	pkg	=	require('../package.json');

const	log	=	require('npmlog');

const	nopt	=	require('nopt');

const	help	=	require('../lib/help.js');

const	osenv	=	require('osenv');

const	fs	=	require('fs');

const	parsed	=	nopt({

		'json':	[Boolean]

},	{'j':	'--json'},	process.argv,	2);

const	home	=	osenv.home();

parsed.loungerconf	=	home	+	'/'	+	'.loungerrc';

if	(!fs.existsSync(parsed.loungerconf))	{

		fs.writeFileSync(parsed.loungerconf,	'');

}

The	 config	 itself	 will	 use	 ini-formatted	 config	 files	 in	 order	 to	 store	 and	 read	 settings.
config-chain	is	a	module	to	load	configurations	with	different	priorities	based	on	the

order	we	load	them.	It	also	supports	ini-formatted	files.

Let’s	create	a	file	lib/config.js	and	require	config-chain:

$	npm	i	--save	config-chain

'use	strict';

const	cc	=	require('config-chain');

config-chain	is	able	to	manage	multiple	configurations.	It	will	override	configuration

settings	according	to	the	order	we	load	them.

For	our	use	case	we	want	the	options	provided	as	arguments	on	the	command	line	to	have
the	highest	priority.	Meaning,	they	override	the	ones	from	the	config	file.	As	the	loading
of	the	file	is	done	async,	we	have	to	listen	to	the	load	event	emitted	by	config-chain

once	it	is	finished.	For	the	use	cases	where	no	config	file	was	set,	we	don’t	try	to	load	add
it	as	file.	On	all	errors	we	reject	our	promise	and	pass	the	error	object:

exports.loadConfig	=	loadConfig;

function	loadConfig	(nopts)	{

		return	new	Promise((resolve,	reject)	=>	{

				let	cfg;

				if	(!nopts.loungerconf)	{

						cfg	=	cc(nopts)

								.on('load',	()	=>	{

										resolve(cfg);

								}).on('error',	reject);

				}	else	{

						cfg	=	cc(nopts)

								.addFile(nopts.loungerconf,	'ini',	'config')

								.on('load',	()	=>	{

										resolve(cfg);

								}).on('error',	reject);

				}

		});

};

The	config	object	that	is	returned	from	config	chain	has	nice	get	and	set	methods.	We

can	even	save	the	config	back	to	the	configuration	file	after	changing	the	config	using	the

save	method.	For	now	we	have	to	integrate	loadConfig	into	the	bootstrap	of	lounger.

Do	 you	 remember	 the	config.get	 method	 in	lounger.js	 from	 the	 previous

chapter?	We	will	replace	it	with	the	config	object	that	is	returned	by	our	load	function.

As	a	first	step	we	have	to	load	our	config	in	lounger.js:

const	config	=	require('./config.js');

In	lounger.load	we	are	going	to	load	the	config:

lounger.load	=	function	load	(opts)	{

		return	new	Promise((resolve,	reject)	=>	{

				config

						.loadConfig(opts)

						.then((cfg)	=>	{

						});

The	other	content	of	lounger.load	including	the	fs.readdir	call	is	moved	into	the

callback	of	the	chained	then	function:

lounger.load	=	function	load	(opts)	{

		return	new	Promise((resolve,	reject)	=>	{

				config.loadConfig(opts)

						.then((cfg)	=>	{

								lounger.config	=	cfg;

								fs.readdir(__dirname,	(err,	files)	=>	{

										files.forEach((file)	=>	{

												if	(!/\.js$/.test(file)	||	file	===	'lounger.js')	{

														return;

												}

												const	cmd	=	file.match(/(.*)\.js$/)[1];

												const	mod	=	require('./'	+	file);

												if	(mod.cli)	{

														cli[cmd]	=	mod.cli;

												}

												if	(mod.api)	{

														api[cmd]	=	mod.api;

												}

										});

										lounger.loaded	=	true;

										resolve(lounger);

								});

						}).catch(reject);

		});

};

If	we	now	run	lounger	it	will	create	a	config	file	for	us	in	our	home	directory.	On	OSX	my
config	is	at	~/.loungerrc.

After	the	file	got	created	(don’t	forget	to	run	lounger	at	least	one	time)	we	can	set	JSON
output	to	true	in	~/.loungerrc:

json	=	true

Just	 try	 out	$	 lounger	 isonline	http://example.com,	 lounger	 will	 print

JSON	now.	We	can	still	override	the	config	on	the	command	line:

$	lounger	isonline	--no-json

As	 manually	 editing	 the	~/.loungerrc	 is	 not	 very	 user	 friendly,	 we	 will	 build	 a

lounger	config	 command.	The	 config	 command	 should	have	 the	 abilities	 to	 show

the	config	and	its	values	and	to	set	config	values.

Here	is	the	proposed	CLI:

$	lounger	config	set	json	true

$	lounger	config	get	json

The	API	could	look	like	this:

lounger.commands.set('json',	true)

lounger.commands.get('json')

config-chain	 offers	 the	 data	 provided	 in	 the	 loaded	 config	 file	 as

.sources.config.data.	For	JSON	formatted	output	we	return	 the	whole	config	 if

no	key	was	provided:

				const	data	=	lounger.config.sources.config.data;

				if	(lounger.config.get('json')	&&	!key)	{

http://example.com

						resolve(data);

						return;

				}

If	a	key	was	provided	we	build	a	JSON	object	that	just	contains	the	value	for	our	key:

				if	(lounger.config.get('json')	&&	key)	{

						resolve({[key]:	data[key]});

						return;

				}

Given	we	don’t	want	JSON	formatted	output	and	provided	a	key	we	return	the	value:

				if	(key)	{

						resolve(lounger.config.sources.config.data[key]);

						return;

				}

In	the	last	case	where	the	json	setting	is	set	to	false,	and	no	key	was	provided	we	simply
read	the	unparsed	ini-file:

				resolve(fs.readFileSync(lounger.config.sources));

Here	is	the	whole	get	function:

function	get	(key)	{

		return	new	Promise((resolve,	reject)	=>	{

				const	data	=	lounger.config.sources.config.data;

				if	(lounger.config.get('json')	&&	!key)	{

						resolve(data);

						return;

				}

				if	(lounger.config.get('json')	&&	key)	{

						resolve({[key]:	data[key]});

						return;

				}

				if	(key)	{

						resolve(lounger.config.sources.config.data[key]);

						return;

				}

				resolve(fs.readFileSync(lounger.config.sources));

		});

}

Modifying	the	config	is	done	by	the	set	function.	It	takes	a	key	and	a	value,	calls	set	on

the	config-chain	object	and	resolves	the	promise	after	the	values	are	written	to	the	disk:

function	set	(key,	value)	{

		return	new	Promise((resolve,	reject)	=>	{

				if	(!key	&&	!value)	{

						reject(new	Error('key	and	value	required'));

						return;

				}

				lounger.config.set(key,	value,	'config');

				lounger.config.on('save',	()	=>	{

						resolve();

				});

				lounger.config.save('config');

		});

}

As	a	last	step	we	have	to	expose	both	commands:

exports.api	=	{

		get:	get,

		set:	set

};

We	build	the	CLI	functionality	on	top	of	our	API	functions.	The	main	difference	between
the	API	and	CLI	function	is	that	the	CLI	function	has	side	effects	for	the	get	command:

it	prints	the	result	to	the	console.	We	also	add	some	nice	error	messages	to	make	it	easier
to	use	 for	our	users.	They	get	 instructions	how	 to	 run	 the	command	 if	 they	don’t	use	 it
properly:

exports.cli	=	cli;

function	cli	(cmd,	key,	value)	{

		return	new	Promise((resolve,	reject)	=>	{

				function	getUsageError	()	{

						const	err	=	new	Error([

								'Usage:',

								'',

								'lounger	config	get	[<key>]',

								'lounger	config	set	<key>	<value>',

].join('\n'));

						err.type	=	'EUSAGE';

						return	err;

				}

				if	(!cmd	||	(cmd	!==	'get'	&&	cmd	!==	'set'))	{

						const	err	=	getUsageError();

						return	reject(err);

				}

				if	(cmd	===	'get')	{

						return	get(key).then((result)	=>	{

								console.log(result);

						}).catch(reject);

				}

				if	(cmd	===	'set')	{

						if	(!key	&&	!value)	{

								const	err	=	getUsageError();

								return	reject(err);

						}

						return	set(key,	value).catch(reject);

				}

		});

}

Great!	 We	 have	 a	 config	 command	 now!	 The	 code	 for	 this	 section	 is	 at
sourcecode/config.	 We	 fulfilled	 all	 points	 from	[_it_supports_powerusers]	 and

[_you_never_get_stuck]	and	are	ready	for	an	initial	release!

Our	first	release	&	release	tips
You	can	publish	Open	Source	modules	after	 registering	an	account	 at	 the	npm	 registry.
After	 registering	 the	 account	you	basically	 just	 have	 to	 type	npm	publish	 to	publish

your	module	 to	 the	registry.	Before	we	publish	 lounger	 I	want	 to	mention	 that	 there	are
some	nice	ways	to	optimise	the	published	packages.	In	this	section	I	will	explain	how	to
optimise	your	package	regarding	size	and	installation	time.

One	 way	 to	 keep	 the	 installation	 size	 small	 is	 to	 add	 a	.npmignore	 file	 to	 the	 root

directory.	It	works	similar	to	a	.gitignore	file	and	npm	won’t	include	the	listed	files

and	directories	in	the	published	package.

Depending	on	the	type	of	the	files	which	aren’t	needed	when	using	the	module	we	are	able
to	save	a	lot	of	space	on	the	hard	disks	of	our	users.	We	will	save	them	a	lot	of	bandwidth,
too.

We	can	save	some	space	if	we	exclude	our	unit	and	integration	tests	and	also	the	source
for	the	compiled	documentation:

/test/

/docs/

build.js

.DS_Store

npm-debug.log

Another	great	way	to	speedup	installation	time	is	to	include	all	production	dependencies	in
the	published	module.	We	can	tell	npm	to	bundle	them	with	our	module	by	adding	them	as
bundleDependencies	to	our	package.json:

		"bundleDependencies":	[

				"config-chain",

				"nopt",

				"npmlog",

				"opener",

				"osenv",

				"request"

],

Bundling	 the	 dependencies	 reduces	 the	 installation	 time	 a	 lot,	 as	we	 omit	 all	 the	 small
HTTP	requests	for	each	dependency	and	their	dependencies	during	installation.	With	the
current	 npm	 3	 it	 reduces	 the	 installation	 time	 from	 20	 seconds	 to	 5	 seconds	 for	 a
broadband	connection.	Bundling	the	dependencies	also	makes	sure	that	our	package	is	still
installable	even	if	a	module	was	unpublished.

When	 we	 now	 run	npm	publish	 we	will	 publish	 a	 highly	 optimised	 version	 of	 our

package.	The	code	for	this	section	is	at	sourcecode/first-release.

Migration	of	large	amounts	of	data	using	Streams
Sometimes	we	want	 to	process	 large	amounts	of	data.	With	 traditional	buffering	we	run
into	memory	problems	very	soon.	The	whole	data	just	doesn’t	fit	into	the	memory	of	the
computer.	 Streams	 enable	 us	 to	 process	 data	 in	 small	 slices.	Node.js	 streams	work	 like
Unix	streams	on	the	terminal,	where	you	pipe	data	from	a	producer	into	a	consumer	using
the	pipe	symbol	|.

The	cat	program	prints	the	content	of	files	to	stdout.	In	this	example	I	am	piping	the

output	 of	 the	cat	 program,	 into	tr	 to	 change	 all	 letters	 from	 our	package.json	 to

upper	case	letters:

$	cat	sourcecode/first-release/package.json	|	tr	'a-z'	'A-Z'

It	works	with	all	output	on	stdout:

$	echo	"i	shout?"	|	tr	'a-z'	'A-Z'

Streams	in	Unix	and	in	Node.js	enable	us	to	compose	small	programs	or	modules	that	do
one	 thing	well	 to	get	our	 task	done.	They	handle	backpressure,	which	means	 that	a	 fast
producer	will	automatically	slow	down	if	it	is	piped	into	a	slow	consumer.

The	 most	 used	 streams	 in	 Node	 are	 the	Readable,	 Writeable	 and	Transform

streams.	They	are	base	classes	that	can	be	used	to	build	your	own	custom	streams.	There
are	 also	 other	 stream	 types,	 like	 the	Duplex	 stream	 and	 the	Passthrough	 stream

which	aren’t	covered	in	 the	book.	The	Readable	stream	is	used	to	read	input	data,	the

Transform	 stream	 is	 usually	 used	 to	 modify	 chunks	 of	 data	 and	 the	Writeable

streams	accepts	data	to	write	it	somewhere	(e.g.	into	a	file).

Today	we	will	write	a	command	that	will	use	streams	for	piping	data	from	CSV	files	into
CouchDB/PouchDB.	We	could	also	write	an	importer	to	migrate	data	from	a	database,	e.g.
a	Postgres	or	MongoDB,	but	with	plain	CSV	files	we	don’t	have	to	install	a	new	database.
The	principle	applies	to	both	source	types,	files	and	databases.	At	the	end	of	the	chapter	I
will	provide	a	 link	 to	 an	example	 for	 a	Node.js	 stream	pipeline	 that	migrates	data	 from
MongoDB	to	CouchDB/PouchDB.

The	first	stream

Building	 streams	can	be	a	bit	 tricky	 sometimes.	We	start	by	creating	 the	 file	stream-

example.js	in	the	root	dir	of	our	module.

Our	first	iteration	will	output	our	CSV	contents	to	stdout.	We	will	use	it	to	learn	how

streams	work	and	build	our	importer	on	top	of	it	later.	To	develop	we	need	a	CSV	file,	we
can	save	it	to	test/fixtures/test.csv:

time;location

march;austin,us

april;boston,us

october;bristol,uk

february;hermigua,es

march;hermigua,es

april;havana,cu

Luckily	we	don’t	have	to	write	our	own	streaming	CSV	parser:

$	npm	install	--save	csv-parse

We	require	the	fs,	and	util	module.	The	util	module	is	used	to	inherit	from	the	base

object	Transform.	The	fs	module	is	needed	to	read	the	CSV	file	from	disk.	We	also	need

to	require	the	CSV	parser:

const	parse	=	require('csv-parse');

const	fs	=	require('fs');

const	Transform	=	require('stream').Transform;

const	util	=	require('util');

Our	custom	stream	called	MyTransformStream	inherits	from	stream.Transform.

We	set	the	stream	into	objectMode	to	be	able	to	process	the	JSON	input	from	the	CSV

parser:

function	MyTransformStream	()	{

		Transform.call(this,	{

				objectMode:	true

		});

}

util.inherits(MyTransformStream,	Transform);

A	Transform	stream	has	to	implement	one	method:	_transform.	The	method	is	called

for	 every	 chunk	 of	 data	 that	 we	 are	 processing.	 In	 the	_transform	 method	 we	 can

transform	the	chunks	to	something	new.	The	transformed	data	is	then	pushed	to	the	next
consumer	using	this.push.	Once	we	are	finished	we	call	 the	done	callback	to	signal

that	we	are	finished	with	this	chunk.	Right	now	we	just	want	to	take	a	look	how	a	chunk
looks	like:

MyTransformStream.prototype._transform	=	transform;

function	transform	(chunk,	encoding,	done)	{

		console.log('chunk:	',	chunk);

		this.push(chunk);

		done();

}

As	last	step	we	have	to	pipe	the	CSV	file	into	the	CSV	parser	and	the	parsed	output	into
our	custom	stream:

const	opts	=	{comment:	'#',	delimiter:	';',	columns:	true};

const	parser	=	parse(opts);

const	input	=	fs.createReadStream(__dirname	+	'/test/fixtures/test.csv');

input

		.pipe(parser)

		.pipe(new	MyTransformStream());

When	we	now	run	node	streams-example.js	we	get	this	output:

$	node	streams-example.js

chunk:		{	time:	'march',	location:	'austin,us'	}

chunk:		{	time:	'april',	location:	'boston,us'	}

chunk:		{	time:	'october',	location:	'bristol,uk'	}

chunk:		{	time:	'february',	location:	'hermigua,es'	}

chunk:		{	time:	'march',	location:	'hermigua,es'	}

chunk:		{	time:	'april',	location:	'havana,cu'	}

Every	 chunk	 is	 a	 JSON	 object	 and	 every	 time	 we	 call	done	 and	 if	 there	 is	 still	 input

produced,	_transform	 is	called	with	 the	next	chunk.	We	could	 take	every	chunk	and

post	 it	 against	 the	 CouchDB	 /	 HTTP	API	 now.	We	would	 keep	 our	memory	 footprint
super	low,	but	we	would	also	send	a	lot	of	HTTP	requests	and	the	whole	migration	would

take	very	long.	A	healthy	compromise	is	to	buffer	a	few	chunks	and	post	them	against	the
bulk	APIs	of	CouchDB/PouchDB.	This	way	we	don’t	buffer	all	existing	data	and	run	out
of	memory	and	we	are	finished	earlier	with	our	import,	as	we	don’t	have	to	send	so	many
HTTP	requests.

The	 code	 for	 this	 section	 can	 be	 found	 at	sourcecode/streams/streams-

example.js.

The	Transform	and	Writeable	stream
For	our	next	 stream	we	will	create	 the	 file	streams-bulk-example.js	 in	 the	root

directory	of	lounger.	It	will	take	the	objects	from	the	CSV	parsing	stream	and	buffer	them.
At	a	given	limit	it	will	pass	the	buffered	objects	to	the	next	consumer.	The	result	passed	to
the	next	consumer	 is	 ready	 to	get	posted	against	 the	CouchDB/PouchDB	bulk	docs	API
endpoint.	 The	 CouchDB/PouchDB	 bulk	 API	 accepts	 an	 array	 of	 objects	 wrapped	 with
{"docs":	[]}.

We	start	with	the	same	set	of	modules:

const	parse	=	require('csv-parse');

const	fs	=	require('fs');

const	Transform	=	require('stream').Transform;

const	util	=	require('util');

The	name	of	our	stream	will	be	TransformToBulkDocs	and	it	will	take	options	as	an

object.	Using	the	options	we	can	specify	the	amount	of	documents	to	buffer:

function	TransformToBulkDocs	(options)	{

		if	(!options)	{

				options	=	{};

		}

		if	(!options.bufferedDocCount)	{

				options.bufferedDocCount	=	200;

		}

The	empty	array	for	this.buffer	will	be	our	buffer:

		Transform.call(this,	{

				objectMode:	true

		});

		this.buffer	=	[];

		this.bufferedDocCount	=	options.bufferedDocCount;

}

util.inherits(TransformToBulkDocs,	Transform);

Here	is	the	whole	constructor	function:

function	TransformToBulkDocs	(options)	{

		if	(!options)	{

				options	=	{};

		}

		if	(!options.bufferedDocCount)	{

				options.bufferedDocCount	=	200;

		}

		Transform.call(this,	{

				objectMode:	true

		});

		this.buffer	=	[];

		this.bufferedDocCount	=	options.bufferedDocCount;

}

util.inherits(TransformToBulkDocs,	Transform);

In	the	_transform	method	we	add	every	chunk	to	our	buffer:

TransformToBulkDocs.prototype._transform	=	transform;

function	transform	(chunk,	encoding,	done)	{

		this.buffer.push(chunk);

If	the	buffer	has	grown	big	enough	we	call	the	method	this.push,	which	we	inherited

from	 the	 base	Transform	 stream.	this.push(args)	 tells	Node	 that	we	want	 to	pass

args	to	the	next	consumer	in	our	stream	pipeline.	We	then	empty	the	buffer	for	new	data

that	might	arrive:

		if	(this.buffer.length	>=	this.bufferedDocCount)	{

				this.push({docs:	this.buffer});

				this.buffer	=	[];

		}

		done();

}

Here	is	the	whole	_transform	method:

TransformToBulkDocs.prototype._transform	=	transform;

function	transform	(chunk,	encoding,	done)	{

		this.buffer.push(chunk);

		if	(this.buffer.length	>=	this.bufferedDocCount)	{

				this.push({docs:	this.buffer});

				this.buffer	=	[];

		}

		done();

}

The	last	part	of	our	file	is	almost	identical	to	our	first	streams	example:

const	opts	=	{comment:	'#',	delimiter:	';',	columns:	true};

const	parser	=	parse(opts);

const	input	=	fs.createReadStream(__dirname	+	'/test/fixtures/test.csv');

input

		.pipe(parser)

		.pipe(new	TransformToBulkDocs());

We	add	a	temporary	console.log	to	our	code	to	see	if	it	works:

		if	(this.buffer.length	>=	this.bufferedDocCount)	{

				this.push({docs:	this.buffer});

				console.log({docs:	this.buffer});

				this.buffer	=	[];

		}

When	 we	 run	node	streams-bulk-example.js	 we	 see	 that…		 it	 doesn’t	 work!

Why?

The	problem	is	that	we	don’t	have	enough	documents	to	reach	the	default	document	count
of	 200.	 The	 same	 applies	 to	 the	 remaining	 documents	 of	 a	 set.	 If	 we	 have	 250	 initial
documents	 as	 input,	 the	 first	 200	 hundreds	 are	 pushed	 to	 the	 next	 consumer,	 but	 the
remaining	 50	 are	 lost.	 Luckily	 the	 Node.js	 developers	 were	 aware	 of	 the	 problem	 and
provided	 the	_flush	method.	The	method	 doesn’t	 have	 to	 be	 implemented	 to	make	 a

Transform	 stream	 work,	 like	 the	_transform	 method.	 Instead	 we	 can	 chose	 to

implement	it,	given	we	need	it.

The	_flush	method	will	get	called	at	 the	very	end	after	all	data	was	consumed	by	 the

stream,	 but	 before	 the	 stream	 emits	 the	end	 event	which	 signals	 the	 end	of	 the	 stream.

_flush	will	get	called	at	the	very	end	and	given	we	still	have	a	few	buffered	documents,

we	push	them	to	the	next	consumer:

TransformToBulkDocs.prototype._flush	=	flush;

function	flush	(done)	{

		this.buffer.length	&&	this.push({docs:	this.buffer});

		done();

}

That’s	our	first	custom	stream!	Don’t	forget	to	remove	the	console.log	call	we	added!

The	next	consumer	in	our	pipeline	will	take	the	collected	documents	and	post	them	against
the	 CouchDB	 /	 PouchDB	 bulk	 docs	 endpoint.	 As	 the	 streams	 are	 able	 to	 handle
backpressure,	 the	 other	 streams	will	wait	 until	we	 successfully	 added	 the	 documents	 to
CouchDB	/	PouchDB.	They	will	continue	to	pass	us	data	down	the	pipeline	once	we	are
able	to	pull	in	the	next	collection	of	documents.

The	next	stream	we	will	build	accepts	 the	data	 from	the	Transform	stream	and	writes	 it
into	the	database.	It	is	a	Writeable	stream	and	we	will	add	it	to	our	streams-bulk-

example.js	file:

const	Writable	=	require('stream').Writable;

Our	Writable	stream	needs	to	know	where	to	put	the	data,	so	we	will	need	to	pass	it	the
database	url.	As	the	methods	of	the	stream	are	called	for	each	chunk	we	have	to	store	the
passed	url	as	this.url:

function	CouchBulkImporter	(options)	{

		if	(!options)	{

				options	=	{};

		}

		if	(!options.url)	{

				const	msg	=	[

						'options.url	must	be	set',

						'example:',

						"new	CouchBulkImporter({url:	'http://localhost:5984/baseball'})"

].join('\n')

				throw	new	Error(msg);

		}

		Writable.call(this,	{

				objectMode:	true

		})

		//	sanitise	url,	remove	trailing	slash

		this.url	=	options.url.replace(/\/$/,	'');

}

util.inherits(CouchBulkImporter,	Writable);

To	implement	a	child	of	a	Writable	stream,	we	have	to	implement	the	_write	method.

Like	 the	_transform	method	of	 the	Transform	stream,	 the	_write	method	 is	called

for	every	chunk	that	 is	passed	 to	 the	stream	from	the	previous	producer.	 In	our	case	we
send	 the	 JSON	 chunks	 as	 JSON	 to	 the	 database	 using	 request.	 After	 we	 sent	 the	 data
successful	 to	 the	/_bulk_docs	API	endpoint	we	call	 the	done	callback	to	signal	that

we	are	ready	for	a	new	chunk:

CouchBulkImporter.prototype._write	=	write;

function	write	(chunk,	enc,	done)	{

		request({

				json:	true,

				uri:	this.url	+	'/_bulk_docs',

				method:	'POST',

				body:	chunk

		},	function	(err,	res,	body)	{

				if	(err)	{

						return	done(err);

				}

				if	(!/^2../.test(res.statusCode))	{

						const	msg	=	'CouchDB	server	answered:	\n	Status:	'	+

								res.statusCode	+	'\n	Body:	'	+	JSON.stringify(body);

						return	done(new	Error(msg));

				}

				done();

		});

}

We	also	have	to	require	request	in	our	file:

const	request	=	require('request');

To	 use	 the	 stream	 we	 have	 to	 pipe	 the	 data	 into	 it.	 We	 update	 the	 last	 section	 of
streams-bulk-example.js:

input

		.pipe(parser)

		.pipe(new	TransformToBulkDocs())

		.pipe(new	CouchBulkImporter({url:	'http://127.0.0.1:5984/travel'}));

After	we	created	the	database	travel	and	run	our	script,	we	have	imported	the	CSV:

$	curl	-X	PUT	http://localhost:5984/travel

{"ok":true}

$	node	streams-bulk-example.js

$	curl	http://localhost:5984/travel/_all_docs

{"total_rows":6,"offset":0,"rows":[{"id":"3444bf7c-65c0-438f-f8e8-

7f55124f1736","key":"3444bf7c-65c0-438f-f8e8-7f55124f1736","value":{"rev":"1-

37fcd2e5b40939805b8e043da44f9b1d"}},{"id":"568c3b0f-78fe-43a2-9eac-

06620cfaa595","key":"568c3b0f-78fe-43a2-9eac-06620cfaa595","value":{"rev":"1-

e047788bac9aada0564fc928642d3960"}},{"id":"5d170e63-d845-4e45-f760-

97e30cbc4b21","key":"5d170e63-d845-4e45-f760-97e30cbc4b21","value":{"rev":"1-

6f1794e4eb24b60665fe02c2624d53eb"}},{"id":"9cd34a61-8a48-4b88-afbf-

7fd6e3c9cf42","key":"9cd34a61-8a48-4b88-afbf-7fd6e3c9cf42","value":{"rev":"1-

747b11a103cc0fe31d1c546ef70d69c0"}},{"id":"cc7da504-438a-40c1-842b-

4722b63c9a37","key":"cc7da504-438a-40c1-842b-4722b63c9a37","value":{"rev":"1-

0f9e7add8b7fbb773dc7d3081475d855"}},{"id":"f09811c5-43ec-4a6d-bd3b-

b34b3674676d","key":"f09811c5-43ec-4a6d-bd3b-b34b3674676d","value":{"rev":"1-

d677c5bbbee1bbbe45f6128a9cf1fe8d"}}]}

We	can	access	a	single	document	using	the	id:

$	curl	http://localhost:5984/travel/3444bf7c-65c0-438f-f8e8-7f55124f1736

{"time":"february","location":"hermigua,es","_id":"3444bf7c-65c0-438f-f8e8-

7f55124f1736","_rev":"1-37fcd2e5b40939805b8e043da44f9b1d"}

Looks	great!	Seems	we	have	everything	in	place	to	use	our	low-level	streaming	functions
in	 the	 command	 line	 client.	 The	 code	 for	 this	 section	 is	 located	 at
sourcecode/streams/streams-bulk-example.js.

The	streaming	import	command
For	the	last	part	of	this	chapter	we	will	reuse	the	custom	stream	implementation	that	we
created	 in	The	 Transform	 and	Writeable	 stream.	 In	 the	 real	 world	 I	 would	 create	 two
modules	for	our	two	streams	to	make	them	reusable	across	multiple	projects,	but	for	now
we	 can	 copy	 the	 code	 for	 the	CouchBulkImporter	 and	 the

TransformToBulkDocs	 streams	 into	lib/csv.js	which	will	 be	 the	 home	of	 our

import	command:

const	parse	=	require('csv-parse');

const	fs	=	require('fs');

const	Transform	=	require('stream').Transform;

const	util	=	require('util');

const	Writable	=	require('stream').Writable;

const	request	=	require('request');

const	lounger	=	require('./lounger.js');

function	TransformToBulkDocs	(options)	{

		if	(!options)	{

				options	=	{};

		}

		if	(!options.bufferedDocCount)	{

				options.bufferedDocCount	=	200;

		}

		Transform.call(this,	{

				objectMode:	true

		});

		this.buffer	=	[];

		this.bufferedDocCount	=	options.bufferedDocCount;

}

util.inherits(TransformToBulkDocs,	Transform);

TransformToBulkDocs.prototype._transform	=	transform;

function	transform	(chunk,	encoding,	done)	{

		this.buffer.push(chunk);

		if	(this.buffer.length	>=	this.bufferedDocCount)	{

				this.push({docs:	this.buffer});

				this.buffer	=	[];

		}

		done();

}

TransformToBulkDocs.prototype._flush	=	flush;

function	flush	(done)	{

		this.buffer.length	&&	this.push({docs:	this.buffer});

		done();

}

function	CouchBulkImporter	(options)	{

		if	(!options)	{

				options	=	{};

		}

		if	(!options.url)	{

				const	msg	=	[

						'options.url	must	be	set',

						'example:',

						"new	CouchBulkImporter({url:	'http://localhost:5984/baseball'})"

].join('\n')

				throw	new	Error(msg);

		}

		Writable.call(this,	{

				objectMode:	true

		})

		//	sanitise	url,	remove	trailing	slash

		this.url	=	options.url.replace(/\/$/,	'');

}

util.inherits(CouchBulkImporter,	Writable);

CouchBulkImporter.prototype._write	=	write;

function	write	(chunk,	enc,	done)	{

		request({

				json:	true,

				uri:	this.url	+	'/_bulk_docs',

				method:	'POST',

				body:	chunk

		},	function	(err,	res,	body)	{

				if	(err)	{

						return	done(err);

				}

				if	(!/^2../.test(res.statusCode))	{

						const	msg	=	'CouchDB	server	answered:	\n	Status:	'	+

								res.statusCode	+	'\n	Body:	'	+	JSON.stringify(body);

						return	done(new	Error(msg));

				}

				done();

		});

}

Let’s	 think	 a	 bit	 about	 the	 command	we	 are	 going	 to	 build.	A	CSV	 can	 have	 different
delimiters,	 some	 use	 semicolons	 as	 a	 delimiter,	 others	 are	 using	 commas	 or	 tabs.	 The

symbols	to	denote	a	comment	can	also	change.	In	our	previous	implementations	we	used
fixed	values:

const	opts	=	{comment:	'#',	delimiter:	';',	columns:	true};

For	 a	 real	 world	 use	 case	 the	 symbols	 for	 the	 delimiter	 and	 comment	 must	 be
configurable.	The	CSV	input	is	usually	a	file.

Here	is	a	possible	CLI:

$	lounger	csv	transfer	<file>	<database>	[--delimiter=;]	[--comment=#]	[--

chunksize=200]

The	 command	csv	 is	open	 to	extension	and	can	host	all	CSV	related	commands	 in	 the

future.	 The	 command	 reads	 quite	 nicely	 and	 is	 easy	 to	 remember:	lounger	 csv

transfer	 <file>	 <database>	 reads	 almost	 as	lounger	 [do]	 csv

transfer	[from]	<file>	[to]	<database>.	Sane	defaults	help	us	 to	avoid

passing	optional	modifiers	at	all,	but	in	case	we	need	to	modify	them	we	can	change	every
important	aspect	of	our	import.

I’m	not	sure	if	you	noticed	it,	but	when	we	played	with	our	streams	we	would	have	had	to
create	the	target	database	using	curl	in	advance.	It	would	be	handy	if	our	CLI	users	don’t
have	to	create	the	target	database	on	their	own.	Our	goal	is	to	help	them	to	solve	their	task
as	 quickly	 and	 easily	 as	 possible,	 so	 we	 should	 automatically	 create	 databases	 as
necessary.

The	 function	createTargetDatabase	 is	 a	 helper	 function	which	wraps	request

into	a	Promise.	If	the	database	was	created	(HTTP	code	201	or	200)	or	the	database	exists
already	(HTTP	code	412)	we	resolve,	all	other	states	lead	to	rejection	of	the	Promise:

function	createTargetDatabase	(url)	{

		return	new	Promise((resolve,	reject)	=>	{

				request({

						json:	true,

						uri:	url,

						method:	'PUT',

						body:	{}

				},	function	(er,	res,	body)	{

						if	(er	&&	(er.code	===	'ECONNREFUSED'	||	er.code	===	'ENOTFOUND'))	{

								const	err	=	new	Error(

										'Could	not	connect	to	'	+	url	+	'.	Please	check	if	the	database	is	

offline'

);

								err.type	=	'EUSAGE';

								return	reject(err);

						}

						if	(er)	{

								return	reject(er);

						}

						const	code	=	res.statusCode;

						if	(code	!==	200	&&	code	!==	201	&&	code	!==	412)	{

								const	msg	=	'CouchDB	server	answered:	\n	Status:	'	+

										res.statusCode	+	'\n	Body:	'	+	JSON.stringify(body);

								return	reject(new	Error(msg));

						}

						resolve();

				});

		});

}

In	 case	 of	 an	ECONNREFUSED	 or	ENOTFOUND	 error	 we	 can	 safely	 assume	 that	 the

database	is	currently	offline	and	ask	the	user	to	take	a	look	if	the	database	is	available.	I
can’t	stress	enough	how	important	proper	error	handling	is.	Take	this	example,	where	we
are	getting	back	ECONNREFUSED:

$./bin/lounger-cli	csv	transfer	test/fixtures/test.csv	

http://127.0.0.1:1337/testimport

ERR!	connect	ECONNREFUSED	127.0.0.1:5984

ERR!	Error:	connect	ECONNREFUSED	127.0.0.1:5984

ERR!					at	Object.exports._errnoException	(util.js:870:11)

ERR!					at	exports._exceptionWithHostPort	(util.js:893:20)

ERR!					at	TCPConnectWrap.afterConnect	[as	oncomplete]	(net.js:1063:14)

ERR!

ERR!

ERR!	lounger:	1.0.0	node:	v4.2.4

ERR!	please	open	an	issue	including	this	log	on	

http://example.com/lounger/issues

Depending	 on	 how	much	 our	 users	 used	Node.js	 before	 they	would	 be	 very	 puzzled	 I
guess.	The	only	way	to	continue	for	them	would	be	to	ask	a	search	engine	or	to	open	an
issue.	After	 receiving	 the	 issue	our	boring	 job	would	be	 to	close	 the	 issue	and	 tell	 them
that	they	probably	had	a	typo	in	their	url.

After	 writing	 the	createTargetDatabase	 function	 we	 should	 have	 all	 our

supporting	 functions	 in	 place.	 As	 usual	 we	 are	 starting	 to	 implement	 the	 main	 CLI
functions	 by	 implementing	 the	 API	 command	 which	 we	 will	 then	 wrap	 with	 our	 CLI
function.

The	 delimiter	 and	 comment	 options	 are	 defined	 in	 the	 config	 file	 or	 are	 passed	 on	 the
command	 line.	 To	 know	 what	 their	 values	 are,	 we	 have	 to	 interact	 with
lounger.config.	To	access	lounger.config	we	have	to	require	it:

const	lounger	=	require('./lounger.js');

The	 main	 API	 function	 checks	 if	 all	 necessary	 arguments	 were	 provided	 and	 applies
defaults	if	no	configuration	was	passed	in	from	the	config	file	or	on	the	command	line.	We
create	 the	 database	 in	 case	 it	 does	 not	 exist	 yet	 and	 delegate	 to	 the	 helper	 function
importFromCsvFile:

exports.api	=	{

		transfer:	bulkdocsImport

};

function	bulkdocsImport	(file,	targetDb)	{

		return	new	Promise((resolve,	reject)	=>	{

				const	opts	=	{};

				if	(!file	&&	!targetDb)	{

						return	reject(new	Error('file	and/or	targetDb	argument	missing'));

				}

				opts.delimiter	=	lounger.config.get('delimiter')	||	';';

				opts.comment	=	lounger.config.get('comment')	||	'#';

				opts.chunksize	=	lounger.config.get('chunksize')	||	200;

				createTargetDatabase(targetDb)

						.then(()	=>	{

								return	importFromCsvFile(file,	targetDb,	opts);

						}).catch(reject);

		});

}

importFromCsvFile	 accepts	 the	 source	 CSV	 file,	 url	 and	 options	 and	 creates	 the

stream	pipeline.	The	main	difference	to	our	previous	code	in	streams-example.js	is

that	we	have	proper	error	handling	in	place	to	catch	all	errors.

function	importFromCsvFile	(file,	url,	opts)	{

		return	new	Promise((resolve,	reject)	=>	{

				const	options	=	{comment:	opts.comment,	delimiter:	opts.delimiter,	

columns:	true};

				const	parser	=	parse(options);

				const	input	=	fs.createReadStream(file);

				input

						.pipe(parser)

						.on('error',	reject)

						.pipe(new	TransformToBulkDocs({bufferedDocCount:	opts.chunksize}))

						.on('error',	reject)

						.pipe(new	CouchBulkImporter({url:	url}))

						.on('error',	reject);

		});

}

The	CLI	functions	finally	wraps	our	API	method	and	adds	friendly	error	messages:

exports.cli	=	importCli;

function	importCli	(cmd,	file,	target)	{

		return	new	Promise((resolve,	reject)	=>	{

				if	(!cmd	||	cmd	!==	'transfer'	||	!file	||	!target)	{

						const	err	=	new	Error(

								'Usage:	lounger	csv	transfer	<file>	<database>	[--delimiter=;]	[--

comment=#]	[--chunksize=200]'

);

						err.type	=	'EUSAGE';

						return	reject(err);

				}

				return	bulkdocsImport(file,	target).catch(reject);

		});

}

We	 introduced	 three	 new	 options,	delimiter,	 comment	 and	chunksize.

lounger.config	 enables	 our	 users	 to	 set	 default	 values	 using	 the	 config	 file.	 In

addition	 we	 have	 to	 take	 care	 that	 the	 options	 are	 parsed	 on	 the	 command	 line.	 In
bin/lounger-cli	we	have	to	register	our	optional	arguments	to	nopt:

const	parsed	=	nopt({

		'json':	[Boolean],

		'delimiter':	[String],

		'comment':	[String],

		'chunksize':	[Number]

},	{'j':	'--json'},	process.argv,	2);

That’s	 it!	We	 created	 a	 command	 that	 is	 able	 to	 stream	 large	 amounts	 of	 data	 into	 our
database.

If	 you	 are	 interested	 in	 a	 stream	 pipeline	which	would	 stream	 data	 from	MongoDB	 to
CouchDB	 you	 can	 take	 a	 look	 at
https://github.com/robertkowalski/couchbulkimporter/blob/master/examples/mongo.js.

The	code	for	this	section	is	at	sourcecode/streams,	enjoy! �

https://github.com/robertkowalski/couchbulkimporter/blob/master/examples/mongo.js

TIPS	&	TRICKS

This	section	collects	some	tips	and	tricks	regarding	Node.js	development	in	general.

Testing
With	 proper	 unit	 and	 integration	 tests	 in	 place,	 ensure	 new	 features	 or	 bugfixes	 don’t
introduce	 regressions.	 There	 are	 a	 lot	 of	 great	 services	 that	 provide	 a	 hosted	 CI
environment.	 They	 can	 test	 every	 Pull	 Request	 before	 it	 is	 merged,	 which	 makes
reviewing	code	a	lot	easier.	A	popular	service	for	hosted	CI	is	Travis	CI.	Travis	CI	is	free
for	Open	Source	projects.

Semantic	Versioning	with	SemVer
I	 would	 recommend	 to	 follow	 Semantic	 Versioning	 with	 SemVer	 (http://semver.org/).
SemVer	 divides	 the	 version	 number	 of	 a	 release	 into	 three	 areas:
MAJOR.MINOR.PATCH.	The	version	3.5.8	would	have	3	as	MAJOR	version	level,	5	as
MINOR	 version	 level	 and	 8	 as	 patchlevel.	 Given	 a	 new	 release	 includes	 a	 breaking
change,	the	MAJOR	version	number	is	bumped.	A	new	feature	would	just	need	a	minor
version	bump	and	bugfixes	would	just	require	a	bump	of	the	PATCH	section.

Example:	My	package	 has	 version	 3.5.7	 and	 I	 add	 a	 new	 feature	which	 does	 not	 break
backwards	compatibility.	My	next	release	would	be	3.6.0.

This	way	your	users	get	an	idea	if	a	release	might	break	their	production	code	(MAJOR),
it	 contains	 a	 new	 feature	 (MINOR)	or	 a	 bug	 fix	 (PATCH).	A	great	 tool	 to	 help	 you	 to
make	 the	 right	 decision	 for	 the	 next	 version	 bump	 is	 semantic-release
(https://www.npmjs.com/package/semantic-release).

Greenkeeper
Keeping	 track	 which	 dependencies	 of	 your	 project	 got	 a	 new	 version	 and	 need	 to	 get
updated	 can	 be	 tedious.	 The	 update	 itself	 (bumping	 the	 version	 number	 in	 the
package.json)	 is	 not	 the	 most	 interesting	 task	 on	 earth,	 too.	 A	 new	 and	 exciting

service	 is	http://greenkeeper.io.	Once	 you	 registered	 it	 for	 your	 project	 it	will	 send	 you
pull	requests	with	updated	versions	of	your	dependencies.	If	you	have	a	testsuite	in	place
and	everything	is	“green“	you	just	have	to	merge	the	Pull	Request	from	the	Greenkeeper

http://semver.org/
https://www.npmjs.com/package/semantic-release
http://greenkeeper.io

bot.	Testing	and	a	CI	Service	that	automatically	runs	the	tests,	SemVer	and	Greenkeeper
really	show	their	strengths	when	combined	together. �

THE	END

I	hope	you	enjoyed	The	CLI	Book!

Our	journey	to	successful	CLIs	doesn’t	end	here,	it	just	begins.

I	 am	 very	 happy	 about	 feedback.	 Please	 send	 and	 feedback	 or	 corrections	 to
theclibook@kowalski.gd.	 You	 can	 also	 contact	 me	 on	 twitter:	@robinson_k	 –	 please
recommend	the	book	to	others	in	case	you	like	it. �

mailto:theclibook@kowalski.gd
https://twitter.com/robinson_k

	Preface
	What makes a good CLI?
	Writing a database administration tool with Node.js
	Tips & Tricks
	The end

